• Title/Summary/Keyword: Fuzzy mixture model

Search Result 22, Processing Time 0.021 seconds

Speaker Identification Using PCA Fuzzy Mixture Model (PCA 퍼지 혼합 모델을 이용한 화자 식별)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2003
  • In this paper, we proposed the principal component analysis (PCA) fuzzy mixture model for speaker identification. A PCA fuzzy mixture model is derived from the combination of the PCA and the fuzzy version of mixture model with diagonal covariance matrices. In this method, the feature vectors are first transformed by each speaker's PCA transformation matrix to reduce the correlation among the elements. Then, the fuzzy mixture model for speaker is obtained from these transformed feature vectors with reduced dimensions. The orthogonal Gaussian Mixture Model (GMM) can be derived as a special case of PCA fuzzy mixture model. In our experiments, with having the number of mixtures equal, the proposed method requires less training time and less storage as well as shows better speaker identification rate compared to the conventional GMM. Also, the proposed one shows equal or better identification performance than the orthogonal GMM does.

  • PDF

A Neuro-Fuzzy Modeling using the Hierarchical Clustering and Gaussian Mixture Model (계층적 클러스터링과 Gaussian Mixture Model을 이용한 뉴로-퍼지 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.512-519
    • /
    • 2003
  • In this paper, we propose a neuro-fuzzy modeling to improve the performance using the hierarchical clustering and Gaussian Mixture Model(GMM). The hierarchical clustering algorithm has a property of producing unique parameters for the given data because it does not use the object function to perform the clustering. After optimizing the obtained parameters using the GMM, we apply them as initial parameters for Adaptive Network-based Fuzzy Inference System. Here, the number of fuzzy rules becomes to the cluster numbers. From this, we can improve the performance index and reduce the number of rules simultaneously. The proposed method is verified by applying to a neuro-fuzzy modeling for Box-Jenkins s gas furnace data and Sugeno's nonlinear system, which yields better results than previous oiles.

A Fuzzy Rule Extraction by EM Algorithm and A Design of Temperature Control System (EM 알고리즘에 의한 퍼지 규칙생성과 온도 제어 시스템의 설계)

  • 오범진;곽근창;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a fuzzy rule extraction method using EM(Expectation-Maximization) algorithm and a design method of adaptive neuro-fuzzy control. EM algorithm is used to estimate a maximum likelihood of a GMM(Gaussian Mixture Model) and cluster centers. The estimated clusters is used to automatically construct the fuzzy rules and membership functions for ANFIS(Adaptive Neuro-Fuzzy Inference System). Finally, we applied the proposed method to the water temperature control system and obtained better results with respect to the number of rules and SAE(Sum of Absolute Error) than previous techniques such as conventional fuzzy controller.

Segmenting Inpatients by Mixture Model and Analytical Hierarchical Process(AHP) Approach In Medical Service (의료서비스에서 혼합모형(Mixture model) 및 분석적 계층과정(AHP)를 이용한 입원환자의 시장세분화에 관한 연구)

  • 백수경;곽영식
    • Health Policy and Management
    • /
    • v.12 no.2
    • /
    • pp.1-22
    • /
    • 2002
  • Since the early 1980s scholars have applied latent structure and other type of finite mixture models from various academic fields. Although the merits of finite mixture model are well documented, the attempt to apply the mixture model to medical service has been relatively rare. The researchers aim to try to fill this gap by introducing finite mixture model and segmenting inpatients DB from one general hospital. In section 2 finite mixture models are compared with clustering, chi-square analysis, and discriminant analysis based on Wedel and Kamakura(2000)'s segmentation methodology schemata. The mixture model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture model is to unfix the sample, to Identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. In section 3 and 4 we illustrate results of segmenting 4510 patients data including menial and ratio scales. And then, we show AHP can be identify the attractiveness of each segment, in which the decision maker can select the best target segment.

A novel Neuro Fuzzy Modeling using Gaussian Mixture Models

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Chun, Myung-Geun;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.1-110
    • /
    • 2002
  • We propose a novel neuro-fuzzy system based on an efficient clustering method. It is a very useful method that improves the performance of a fuzzy model with small number of fuzzy rules. The fuzzy clustering methods are studied in the wide range of fuzzy modeling. One of them, the grid partition method has problem of exponentially increasing number of rules when the dimension of input or number of membership function is linearly increased. On the other hand, the Expectation Maximization algorithm is an efficient estimation for unknown parameters of the Gaussian mixture model. Here it is noted that the parameters can be used for fuzzy clustering method. In a fuzzy modeling, it is desired that...

  • PDF

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

Segmentation of the Compensation Packages for Doctors by Mixture Regression Model (혼합회귀모델을 이용한 의사의 선호보상체계 분석)

  • Paik, Soo-Kyung;Kwak, Young-Sik
    • Korea Journal of Hospital Management
    • /
    • v.10 no.4
    • /
    • pp.75-97
    • /
    • 2005
  • The research objective is to empirically investigate the compensation packages maximizing the utilities of internal customers by applying the market segmentation theory. Data was collected from four Korean hospitals in Seoul, Busan and Gyunggi-do. The research is designed to seek the compensation package maximizing the utility of doctors by mixture regression model, which has been applied as latent structure and other type of finite mixture models from various academic fields since early 1980s. The mixture regression model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture regression model is to unmix the sample, to identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. The doctors were segmented into 5 groups by their preference for the compensation package. The results of this study imply that the utility of doctors increases with differentiated compensation package segmented by their preference.

  • PDF

Model-based Clustering of DOA Data Using von Mises Mixture Model for Sound Source Localization

  • Dinh, Quang Nguyen;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • In this paper, we propose a probabilistic framework for model-based clustering of direction of arrival (DOA) data to obtain stable sound source localization (SSL) estimates. Model-based clustering has been shown capable of handling highly overlapped and noisy datasets, such as those involved in DOA detection. Although the Gaussian mixture model is commonly used for model-based clustering, we propose use of the von Mises mixture model as more befitting circular DOA data than a Gaussian distribution. The EM framework for the von Mises mixture model in a unit hyper sphere is degenerated for the 2D case and used as such in the proposed method. We also use a histogram of the dataset to initialize the number of clusters and the initial values of parameters, thereby saving calculation time and improving the efficiency. Experiments using simulated and real-world datasets demonstrate the performance of the proposed method.

Advance Neuro-Fuzzy Modeling Using a New Clustering Algorithm (새로운 클러스터링 알고리듬을 적용한 향상된 뉴로-퍼지 모델링)

  • 김승석;김성수;유정웅
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.536-543
    • /
    • 2004
  • In this paper, we proposed a new method of modeling a neuro-fuzzy system using a hybrid clustering algorithm. The initial parameters and the number of clusters of the proposed system are optimally chosen simultaneously with respect to the process of regression, which is a unique characteristics of the proposed system. The proposed algorithm presented in this work improves the overall performance of the proposed a neuro-fuzzy system by choosing a proper number of clusters adaptively according the characteristics of given data. The process of clustering is performed by deciding on the number of classes, which yields the property of convergence of the system. In experiments, the superiority of the proposed neuro-fuzzy system is demonstrated, especially the process of optimizing parameters and clustering of learning speed.

Fuzzy Clustering with Improving Gustafson-Kessel Algorithm (개선된 Gustafson-Kessel 알고리즘을 이용한 퍼지 클러스터링)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.239-242
    • /
    • 2003
  • 본 논문에서는 Gaussian Mixture Model을 이용한 Gustafson-Kessel 알고리즘의 성능을 개선하였다. 분포 및 밀도가 다른 데이터에 대하여 적절한 클러스터 파라미터를 추정함으로써 클러스터링의 성능을 개선한다. 일반적인 클러스터링 알고리즘의 경우, 데이터가 편중되거나 각 데이터의 밀도가 서로 틀린 경우 클러스터의 파라미터가 정확하게 클러스터를 표현하지 못하는 문제점을 가지고 있다. 제안된 방법에서는 Gustafson-Kessel 알고리즘을 이용하여 클러스터 파라미터를 추정하며 알고리즘내의 파라미터 일부를 Gaussian Mixture Model을 이용하여 동적으로 갱신하였다 시뮬레이션을 통하여 제안된 방법의 유용성을 보인다.

  • PDF