• Title/Summary/Keyword: Fuzzy matrix

Search Result 460, Processing Time 0.023 seconds

A Study on the Stability of Takagi-Sugeno Fuzzy Control System (어핀 Takagi-Sugeno 퍼지 제어 시스템의 안정도에 대한 연구)

  • Kim, Eun-Tai;Kim, Dong-Yon;Park, Hyun-Sik;Park Mig-Non
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.56-64
    • /
    • 1999
  • In this paper, a novel approach to the stability analysis of the continuous affine Takagi-Sugeno fuzzy control systems is proposed. The suggested analysis method is easily implemented by the recently spotlighted convex optimization techniques called Linear Matrix Inequalities (LMI). First, it derives the stability condition under which the affine Takagi-Sugeno fuzzy system is stable in the large. Next, the derived condition is recast in the formulation of LMI and numerically addressed. Finally, the applicability of the suggested methodology is highlighted via computer simulations.

  • PDF

Fuzzy Output-Tracking Control for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 퍼지 출력 추종 제어)

  • Lee, Ho-Jae;Joom, Young-Hoo;Park, Jin-Ba
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • A systematic output tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities. A stability condition on the traversing time instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design.

A study on the Stability of Discrete-time Affine Type III Fuzzy Control System (이산 시간 어핀 Type III 퍼지 제어 시스템의 안정도에 대한 연구)

  • Kim, Eun-Tai;Lee, Hee-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • In this paper, we propose the stability analysis and design methodology for the discrete-time affine Type III fuzzy system via the convex optimization technique. First, the stability condition is derived under which the discrete-time affine Type III fuzzy system is quadratically stable in the large. Next, the derived condition is reformulated into the convex optimization problem called Linear Matrix Inequalities (LMI) and numerically addressed. Finally, the effectiveness and the feasibility of the proposed analysis and design methodology is highlighted via an example and its computer simulation result.

  • PDF

Observer Design for H- Fault Detection of Large Scale T-S Fuzzy Systems (대규모 T-S 퍼지 시스템의 H- 고장검출을 위한 관측기 설계)

  • Jee, Sung-Chul;Lee, Ho-Jae;Joo, Young-Hoon;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • In this paper, we discuss a decentralized observer design problem for the fault detection in the large-scale continuous-time T-S (Takagi-Sugeno) fuzzy system. Since the fault detection residual is desired to be as sensitive as possible, on the fault, we use $\mathfrak{H}_-$ index performance criterion. Sufficient conditions for the existence of such a observer is presented in terms of linear matrix inequalities. Simulation results show the effectiveness of the proposed method.

An Evaluative Study of the Operational Safety of High-Speed Railway Stations Based on IEM-Fuzzy Comprehensive Assessment Theory

  • Wang, Li;Jin, Chunling;Xu, Chongqi
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1064-1073
    • /
    • 2020
  • The general situation of system composition and safety management of high-speed railway terminal is investigated and a comprehensive evaluation index system of operational security is established on the basis of railway laws and regulations and previous research results to evaluate the operational security management of the high-speed railway terminal objectively and scientifically. Index weight is determined by introducing interval eigenvalue method (IEM), which aims to reduce the dependence of judgment matrix on consistency test and improve judgment accuracy. Operational security status of a high-speed railway terminal in northwest China is analyzed using the traditional model of fuzzy comprehensive evaluation, and a general technique idea and references for the operational security evaluation of the high-speed railway terminal are provided. IEM is introduced to determine the weight of each index, overcomes shortcomings of traditional analytic hierarchy process (AHP) method, and improves the accuracy and scientificity of the comprehensive evaluation. Risk factors, such as terrorist attacks, bad weather, and building fires, are intentionally avoided in the selection of evaluation indicators due to the complexity of risk factors in the operation of high-speed railway passenger stations and limitation of the length of the paper. However, such risk factors should be considered in the follow-up studies.

A Study on The Neural Network Controller using Relative Gain Matrix Technique (상대이득 행렬 기법을 이용한 신경망 제어기 설계에 관한 연구)

  • Seo, Ho-Joon;Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.606-608
    • /
    • 1997
  • In this paper, Neuro-Fuzzy Controller(NFC), a fuzzy system realized using a neural network, is to adopt for the multivariable system. In the multivariable system, the interactive effects between the variables should be taken into account. A simple compensator, using the steady-state information can be obtained for open-loop stable systems, is presented to cope with this problem. However, it should be supposed that the plant is unknown to the control system designer, but an estimate of the DC gain has been obtained by carrying out experiments on the plant. Also, if the variables are not combinated completely, it is difficult to design the controller. Therefore, we design a neuro-fuzzy controller which controls a multivariable system with only input output informations, and compare its performance with that of a PI controller. In the proposed controller, the construction of the membership functions and rule base, which is highly heuristic, can be achieved using a training process. This allows the combination of knowledge of human experts and evidence from input-output data.

  • PDF

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei;Hayat, T.;Ahmad, B.;Chen, Cheng-Wu
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.385-407
    • /
    • 2015
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.

Decentralized Dynamic Output Feedback Controller for Discrete-time Nonlinear Interconnected Systems via T-S Fuzzy Models (이산 시간 비선형 상호 결합 시스템의 T-S 퍼지 모델을 위한 분산 동적 출력 궤한 제어기 설계)

  • Gu, Geun-Beom;Ju, Yeong-Hun;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.374-377
    • /
    • 2007
  • 본 논문은 Takagi-Sugeno (T-S) 퍼지 모델을 이용하여 이산 시간에서의 비선형 상호 결합 시스템에 대한 분산 동적 출력 궤한 제어기를 제시한다. 이산시간 비선형 상호 결합 시스템의 각 하위 시스템에 대한 T-S 퍼지 모델링을 한 후, 각각에 대해 동적 출력 궤한 제어기를 설계한다. 제어가 된 폐루프 하위 시스템들로 전체 시스템의 평형점이 안정화되는 선형 행렬 부등식 (LMI)을 구하고, 부등식을 이용하여 동적 출력 궤한 제어기의 이득값을 구한다. 마지막으로 모의실험을 통해 분산 동적 출력 궤한 제어기의 효용성을 확인한다.

  • PDF

Observer-Based Output-feedback Sampled-Data Controlling the Singularly Perturbed Takagi-Sugeno Fuzzy Model (특이섭동 타카기 수게노 퍼지모델의 관측기기반 - 출력궤환 샘플치제어)

  • Kang, Hyoung Bin;Moon, Ji Hyun;Lee, Ho Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.679-685
    • /
    • 2016
  • This paper addresses an observer-based output-feedback sampled-data controller design problem for nonlinear systems in Takagi-Sugeno (T-S) form including singular perturbations. The design condition is represented in terms of linear matrix inequalities. The separation principle is also investigated.

Stabilization Analysis for Switching-Type Fuzzy-Model-Based Controller (스위칭 모드 퍼지 모델 기반 제어기를 위한 안정화 문제 해석)

  • 김주원;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.149-152
    • /
    • 2001
  • 본 논문은 연속 시간과 이산 시간에서의 스위칭 모드 퍼지 모델 기반 제어기의 새로운 설계 기법에 대해서 논의한다. 스위칭 모드 퍼지 모델 기반 제어기의 설계에는 Takagi-Sugeno(75) 퍼지 시스템이 사용된다. 이 스위칭 모드 퍼지 모델 기반 제어기는 "정복-분할(divide and conquer)"이라는 하향식 접근 방식을 이용한다. 이 방법은 여러 개의 규칙을 가지고 있는 시스템에서 유한의 하위 시스템으로 시스템을 분할하여 각각의 부분 해를 구하고 이들을 결합하여 전체 시스템의 해를 구하는 방법이다. 제어기의 설계 조건은 주어진 75 퍼지 시스템의 안정화를 보장하는 선형 행렬 부등식들(LMls)에 의해 결정된다. 적절한 시뮬레이션 예제를 통한 성능 비교를 통해 본 논문의 우수성을 입증한다.

  • PDF