• Title/Summary/Keyword: Fuzzy logic current controller

Search Result 66, Processing Time 0.025 seconds

A Study on the Position Control and Simulation of Pneumatic Servo System (공기압 서보 시스템의 위치 제어 및 시뮬레이션에 관한 연구)

  • Choi, Seo-Ho;Hong, Yeh-Sun;Lee, Chung-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.102-113
    • /
    • 1996
  • An experimental and theoretical study on a pneumatic servo system has been conducted using on-off valves and a pneumatic cylinder. A V/I converter has been designed for rapid rising and falling of the solenoid current, which significantly improves the positioning accuracy and settling time of the servo system by shortening the valve opening time. Pulse width modulation was modified to operate on-off valves effectively. A state feedback controller which feeds back position, velocity and acceleration is used to control the system. The influence of controller gains on the system performance is studied to develop a scheme that automatically adjusts the gains using fuzzy logic theory. It is shown experimentally that the proposed fuzzy logic tuner works satisfactorily. A new method for measurements of valve effective areas is proposed, and a partially polytropic model is applied to simulation of the pneumatic system. Simulated results show good agreement with experimental data.

  • PDF

General Digital Fuzzy Logic Controller Design For Resonant Inverter (공진형 인버터를 위한 범용 퍼지 논리 제어기 설계)

  • 김태언;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • Induction heating system is time varying system around curie point. So, it has many troubles which are system shut down and change the load impedance. In this paper has been designed the parallel resonant inverter which controlling the constant power and tracking the load resonant frequency with PLL is possible, in order to minimize switching losses and solve it's many troubles. The current full-bridge type parallel resonant inverter of an induction heating system was composed of IGBT in switching device. For regulating the output power of an induction heating system, the Fuzzy logic controller is used. The Fuzzy controller makes the control signal for a stable power regulating control and when reference is changed, it is superior to adaptability. It has been evaluated a stable behavior for a noise with switching and a load disturbance.

  • PDF

Improvement of Dynamic Response Characteristics of Parallel PWM Converters Using Fuzzy Logic Controller (퍼지 제어기를 이용한 병렬 PWM 컨버터의 과도응답특성 개선)

  • 민병권;김이훈;김재문;원충연;김규식;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.303-312
    • /
    • 2002
  • In this paper, a fuzzy logic controller(FLC) for parallel operation system of PWM converters with high performances is proposed and a PI controller is also realized to compare with the performances of the proposed FLC. The simulation and experimental results show that performances of the proposed FLC are far more excellent compared with those of PI controller, especially in points of DC voltage transient response characteristics and current control transient response characteristics at step increase of rated load. To verify the superiorities of the proposed FLC and actually apply it in industrial field, Simulation iud experimental results are provided to verify the implemented a PWM converter system with 15kw capacity in paralleled with two 7.5kW PWM converters.

Stabilization of Fixed Speed Wind Generator by using Variable Speed PM Wind Generator in Multi-Machine Power System

  • Rosyadi, Marwan;Takahashi, Rion;Muyeen, S.M.;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • This paper present stabilization control of fixed speed wind generator by using variable speed permanent magnet wind generator in a wind farm connected with multi-machine power system. A novel direct-current based d-q vector control technique of back to back converter integrated with Fuzzy Logic Controller for optimal control configuration is proposed, in which both active and reactive powers delivered to a power grid system are controlled effectively. Simulation analyses have been performed using PSCAD/EMTDC. Simulation results show that the proposed control scheme is very effective to enhance the voltage stability of the wind farm during fault condition.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

A study on the development of an arc sensor and its interface system for a welding robot (용접로봇을 위한 아크센서 및 인?이스 시스템 개발에 관한 연구)

  • 배강열;이지형;정창욱
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.129-140
    • /
    • 1998
  • An interface system was developed to offer the welding capability to a robot controller which had not any embedded function for arc welding before, and also an arc sensor algorithm was proposed for weld seam tracking of the welding robot. For the interface system between the robot controller and welding equipments, data communication software and interface connections were composed. The interface system was mae to correspond welding condition, correction data, operation sequence and current status with the robot controller by mutual had shaking and digital signal transfer. Graphic user interface program developed under the environment of windows made it easy to monitor data communication and operation status, and to control welding and sensing sequence. Arc sensing algorithm proposed in this study to compensate torch position error was based on a fuzzy logic with the variables of current difference and current differenced change at torch weaving extremities. The developed interface system could be successfully implemented in between welding equipments and the robot controller, and showed normal status and exact function in data and signal communication between the systems. The whole robot welding system was then examined to verify its welding and seam tracking capabilities in horizontal fillet, vertical fillet, and 3-dimensional fillet weldment. The experiments revealed sound weld bead shapes and also good seam tracing results.

  • PDF

Fuzzy Technique based Chopper Control for Slip Energy Recovery System with Twelve-Pulse Converter

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.509-514
    • /
    • 2004
  • This paper introduces the modified slip energy recovery system in order to improve its power factor and to reduce harmonics of line current waveforms. Twelve pulse line commutated converter with the chopper type IGBT is applied where the chopper is applied across the DC terminal and the chopped DC is fed to the converter operating as an inverter and then passed through the wye-wye and delta-wye transformer circuit. This scheme leads to be able to adjust the speed of the motor by the duty cycle of the chopper operating in PWM mode. The fuzzy logic controller is also introduced to the modified slip energy recovery system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW wound rotor induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

  • PDF

FUZZY Gain Tuning of PI Speed Controller Depending on Afterloads In Total Artificially Heart

  • Choi, Jong-Hoon;Choi, Won-Woo;Choi, Jae-Soon;Om, Kyong-Sik;Lee, Jung-Hoon;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.156-160
    • /
    • 1997
  • In this paper, the control scheme is proposed that PI controller parameter used for TAH speed control is adapted by fuzzy logic method using only the motor current waveform. By scheduling PI parameters, minimization of the vibration and the energy consumption and overcoming AoP loads becomes possible. In in vitro tests experimental results show our approach is a good scheme that is adapted to changing afterloads well.

  • PDF

FUZZY CONTROL: DESIGNING VIA FUZZY MODELLING

  • Hirota, Kaoru;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.877-880
    • /
    • 1993
  • Fuzzy control algorithms are developed based on fuzzy models of systems. The control issues are posed as multiobjective optimization problems involving goals and constraints imposed on system's variables. Two basic design modes embrace on-and off-line control development. The first type of design deals with the time and state-dependent objectives and pertains to control determination based upon the current state of the system. The second design mode gives rise to explicit forms of fuzzy controller that is learned based on a given list of state-control associations. Both the fuzzy models as well as fuzzy controllers are realized as logic processors.

  • PDF

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.