• Title/Summary/Keyword: Fuzzy linear systems

Search Result 593, Processing Time 0.021 seconds

Intelligent Maneuvering Target Tracking Based on Noise Separation (잡음 구분에 의한 지능형 기동표적 추적기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2011
  • This paper presents the intelligent tracking method for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. K-means clustering and TS fuzzy system are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by K-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. While calculating expected value, the non-linearity of the maneuvering target is recognized as linear one by dividing acceleration and the capability of Kalman filter is kept in the filtering process. The error for the non-linearity is compensated by approximated acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.

Dempster-Shafer's Evidence Theory-based Edge Detection

  • Seo, Suk-Tae;Sivakumar, Krishnamoorthy;Kwon, Soon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Edges represent significant boundary information between objects or classes. Various methods, which are based on differential operation, such as Sobel, Prewitt, Roberts, Canny, and etc. have been proposed and widely used. The methods are based on a linear convolution of mask with pre-assigned coefficients. In this paper, we propose an edge detection method based on Dempster-Shafer's evidence theory to evaluate edgeness of the given pixel. The effectiveness of the proposed method is shown through experimental results on several test images and compared with conventional methods.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Multimodal System by Data Fusion and Synergetic Neural Network

  • Son, Byung-Jun;Lee, Yill-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 2005
  • In this paper, we present the multimodal system based on the fusion of two user-friendly biometric modalities: Iris and Face. In order to reach robust identification and verification we are going to combine two different biometric features. we specifically apply 2-D discrete wavelet transform to extract the feature sets of low dimensionality from iris and face. And then to obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Direct Linear Discriminant Analysis (DLDA) is used in our multimodal system. In addition, the Synergetic Neural Network(SNN) is used to obtain matching score of the preprocessed data. This system can operate in two modes: to identify a particular person or to verify a person's claimed identity. Our results for both cases show that the proposed method leads to a reliable person authentication system.

Iris Segmentation and Recognition

  • Kim, Jae-Min;Cho, Seong-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.227-230
    • /
    • 2002
  • A new iris segmentation and recognition method is described. Combining a statistical classification and elastic boundary fitting, the iris is first segmented robustly and accurately. Once the iris is segmented, one-dimensional signals are computed in the iris and decomposed into multiple frequency bands. Each decomposed signal is approximated by a piecewise linear curve connecting a small set of node points. The node points represent features of each signal. The similarity measture between two iris images is the normalized cross-correlation coefficients between simplified signals.

A Spatial Regularization of LDA for Face Recognition

  • Park, Lae-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • This paper proposes a new spatial regularization of Fisher linear discriminant analysis (LDA) to reduce the overfitting due to small size sample (SSS) problem in face recognition. Many regularized LDAs have been proposed to alleviate the overfitting by regularizing an estimate of the within-class scatter matrix. Spatial regularization methods have been suggested that make the discriminant vectors spatially smooth, leading to mitigation of the overfitting. As a generalized version of the spatially regularized LDA, the proposed regularized LDA utilizes the non-uniformity of spatial correlation structures in face images in adding a spatial smoothness constraint into an LDA framework. The region-dependent spatial regularization is advantageous for capturing the non-flat spatial correlation structure within face image as well as obtaining a spatially smooth projection of LDA. Experimental results on public face databases such as ORL and CMU PIE show that the proposed regularized LDA performs well especially when the number of training images per individual is quite small, compared with other regularized LDAs.