• 제목/요약/키워드: Fuzzy learning

검색결과 982건 처리시간 0.035초

자기학습형 퍼지제어기에 의한 유도전동기 고성능 속도제어에 관한 연구 (A Study on the High Performance Speed Control of Induction Motor Using Self-Learning Fuzzy Controller)

  • 박영민;김연충;김재문;원충연;김영렬;김학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.505-508
    • /
    • 1997
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of induction motor. For the torque control method, an indirect vector control scheme with slip calculation is used because of its stable characteristics regardless of speed. Motor input current is regulated by a current controlled voltage source PWM inverter using space voltage vector technique. Also, the scheme of current control fuzzy controller is synchronous reference frame with decoupling term. DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzz. control algorithm. An IPM is used to simplify hardware design.

  • PDF

하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계 (Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System)

  • 장성대;지평식
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

강화 학습에 기반한 뉴럴-퍼지 제어기 (Neural-Fuzzy Controller Based on Reinforcement Learning)

  • 박영철;김대수;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.245-248
    • /
    • 2000
  • 본 논문에서는 강화 학습 개념을 도입하여 자율이동 로봇의 성능을 개선하고자 한다. 본 논문에서 사용되는 시스템은 크게 두 부분으로 나눌 수가 있다. 즉, 뉴럴 퍼지 부분과 동적귀환 신경회로망이다. 뉴럴 퍼지 부분은 로봇의 다음 행동을 결정하는 부분이다. 또한 동적귀환 신경회로망으로부터 내부 강화 신호를 받아 학습을 하여 최적의 행동을 결정하게 된다. 동적 귀환신경회로망은 환경으로부터 외부 강화신호를 입력으로 받아 뉴럴 퍼지의 행동결정에 대해 평가를 한다. 또한 내부강화 신호 값을 결정하는 동적 귀환 신경회로망의 웨이트는 유전자 알고리즘에 의해 진화를 한다. 제안한 알고리즘 구조를 컴퓨터 시뮬레이션상에서 자율 이동 로봇의 제어에 적용을 함으로서 그 유효성을 증명하고자 한다.

  • PDF

뉴로-퍼지 모델을 이용한 단기 전력 수요 예측시스템 (Short-Term Electrical Load Forecasting using Neuro-Fuzzy Models)

  • 박영진;심현정;왕보현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권3호
    • /
    • pp.107-117
    • /
    • 2000
  • This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The primary goal of the proposed method is to improve the performance of the prediction model in terms of accuracy and reliability. For this, the proposed method explores the advantages of the structure learning of the neuro-fuzzy model. The proposed load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized model. In order to demonstrate the viability of the proposed method, we develop an one hour ahead load forecasting system by using the real load data collected during 1993 and 1994 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability compared with the prediction systems based on multilayer perceptrons, radial basis function networks, and neuro-fuzzy models without the structure learning.

  • PDF

A comparative study on applicability and efficiency of machine learning algorithms for modeling gamma-ray shielding behaviors

  • Bilmez, Bayram;Toker, Ozan;Alp, Selcuk;Oz, Ersoy;Icelli, Orhan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.310-317
    • /
    • 2022
  • The mass attenuation coefficient is the primary physical parameter to model narrow beam gamma-ray attenuation. A new machine learning based approach is proposed to model gamma-ray shielding behavior of composites alternative to theoretical calculations. Two fuzzy logic algorithms and a neural network algorithm were trained and tested with different mixture ratios of vanadium slag/epoxy resin/antimony in the 0.05 MeV-2 MeV energy range. Two of the algorithms showed excellent agreement with testing data after optimizing adjustable parameters, with root mean squared error (RMSE) values down to 0.0001. Those results are remarkable because mass attenuation coefficients are often presented with four significant figures. Different training data sizes were tried to determine the least number of data points required to train sufficient models. Data set size more than 1000 is seen to be required to model in above 0.05 MeV energy. Below this energy, more data points with finer energy resolution might be required. Neuro-fuzzy models were three times faster to train than neural network models, while neural network models depicted low RMSE. Fuzzy logic algorithms are overlooked in complex function approximation, yet grid partitioned fuzzy algorithms showed excellent calculation efficiency and good convergence in predicting mass attenuation coefficient.

비선형 시스템의 안정화를 위한 자기순환 뉴로-퍼지 제어기의 설계 (Design of Self Recurrent Neuro-Fuzzy Controller for Stabilization of Nonlinear System)

  • 탁한호;이인용;이성현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.390-393
    • /
    • 2007
  • In this paper, applications of self recurrent neuro-fuzzy controller to stabilization of nonlinear system are considered. The architecture of self recurrent neuro-fuzzy controller is fix layer, and the hidden layer is comprised of self recurrent architecture. Also, generalized dynamic error-backpropagation algorithm is used for the learning of the self recurrent neuro-fuzzy controller. To demonstrate the efficiency of the self recurrent neuro-fuzzy control algorithm presented in this study, a self recurrent neuro-fuzzy controller was designed and then a comparative analysis was made with LQR controller through an simulation.

  • PDF

Neural Network Compensation Technique for Standard PD-Like Fuzzy Controlled Nonlinear Systems

  • Song, Deok-Hee;Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.68-74
    • /
    • 2008
  • In this paper, a novel neural fuzzy control method is proposed to control nonlinear systems. A standard PD-like fuzzy controller is designed and used as a main controller for the system. Then a neural network controller is added to the reference trajectories to form a neural-fuzzy control structure and used to compensate for nonlinear effects. Two neural-fuzzy control schemes based on two well-known neural network control schemes, the feedback error learning scheme and the reference compensation technique scheme as well as the standard PD-like fuzzy control are studied. Those schemes are tested to control the angle and the position of the inverted pendulum and their performances are compared.

퍼지 균등화와 언어적인 Hedge를 이용한 GA 기반 퍼지 모델링 (GA based Fuzzy Modeling using Fuzzy Equalization and Linguistic Hedge)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.217-220
    • /
    • 2001
  • The fuzzy equalization method does not require the usual learning step for generating fuzzy rules. However it is heavily depend on the given input-output data set. So, we adapt an hierarchical scheme which sequentially optimizes the fuzzy inference system. Here, the parameters of fuzzy membership functions obtained from the fuzzy equalization are optimized by the genetic algorithm, and then they are also modified to increase the performance index using the linguistic hedge. Finally, we applied it to the Rice taste data and got better results than previous ones.

  • PDF

가변부하를 갖는 직류 서보 전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계 (Design of Neuro-Fuzzy Controller for Velocity Control of DC Servo Motor with Variable Loads)

  • 김상훈;강영호;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.513-515
    • /
    • 1999
  • In this paper, Neuro-Fuzzy controller which has the characteristic of Fuzzy control and artificial Neural Network is designed A fuzzy rule to be applied is selected automatically by the allocated neurons. The neurons correspond to Fuzzy rules which are created by the expert. In order to adaptivity, the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in Neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of Dual mode Method. To test the effectiveness of the algorithm designed above the experiment for DC servo motor with variable load as variable load plant is implementation.

  • PDF