• Title/Summary/Keyword: Fuzzy learning

Search Result 974, Processing Time 0.029 seconds

A Learning Algorithm for Optimal Fuzzy Control Rules (최적의 퍼지제어규칙을 얻기위한 퍼지학습법)

  • Chung, Byeong-Mook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.399-407
    • /
    • 1996
  • A fuzzy learning algorithm to get the optimal fuzzy rules is presented in this paper. The algorithm introduces a reference model to generate a desired output and a performance index funtion instead of the performance index table. The performance index funtion is a cost function based on the error and error-rate between the reference and plant output. The cost function is minimized by a gradient method and the control input is also updated. In this case, the control rules which generate the desired response can be obtained by changing the portion of the error-rate in the cost funtion. In SISO(Single-Input Single- Output)plant, only by the learning delay, it is possible to experss the plant model and to get the desired control rules. In the long run, this algorithm gives us the good control rules with a minimal amount of prior informaiton about the environment.

A SPEED CONTROLLER FOR VEHICLES USING FUZZY CONTROL ALGORITHM WITH SELF0LEARNING (자기 학습 능력을 가진 퍼지 제어기를 이용한 차량의 속력 제어기 개발)

  • 정승현;김상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.880-883
    • /
    • 1996
  • This paper suggests a speed control algorithm for the ICC(Intelligent Cruise Controller) system. The speed controller is designed using the fuzzy controller which shows the good performance in nonlinear system having the complex mathematical model. The fuzzy controller was equipped with the capability of a self-learning in real time in order to maintain the good performance of the speed controller in a time-varying environment the self-learning properties and the performance of the fuzzy controller are showed via computer simulation. The suggested fuzzy controller will be applied to the PRV-III which is our test vehicle.

  • PDF

Fuzzy Neural Network Model Using A Learning Rule Considering the Distances Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo;Baek Yong-Sun;Lee Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.460-465
    • /
    • 2006
  • This paper presents a new fuzzy learning rule which considers the Euclidean distances between the input vector and the prototypes of classes. The new fuzzy learning rule is integrated into the supervised IAFC neural network 4. This neural network is stable and plastic. We used iris data to compare the performance of the supervised IAFC neural network 4 with the performances of back propagation neural network and LVQ algorithm.

Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System (자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계)

  • Cho, Jae-Hoon;Kim, Yong Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system (동등 변환 2계층 퍼지 시스템의 규칙 자동 학습)

  • Joo, Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.598-603
    • /
    • 2007
  • To solve the rule explosion problem in multi-input fuzzy system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system has been reported, where at the 1st layer, linearly independent fuzzy rule vectors generated from the given fuzzy system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used. In this paper, the steapest descent algorithm is presented to learn the fuzzy rule vectors and related coefficients for the equivalent 2 layered hierarchical structure. By simulation of learning of ball and beam control system, the feasibility of proposed learning scheme is shown.

Fuzzy Supervised Learning Algorithm by using Self-generation (Self-generation을 이용한 퍼지 지도 학습 알고리즘)

  • 김광백
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1312-1320
    • /
    • 2003
  • In this paper, we consider a multilayer neural network, with a single hidden layer. Error backpropagation learning method used widely in multilayer neural networks has a possibility of local minima due to the inadequate weights and the insufficient number of hidden nodes. So we propose a fuzzy supervised learning algorithm by using self-generation that self-generates hidden nodes by the compound fuzzy single layer perceptron and modified ART1. From the input layer to hidden layer, a modified ART1 is used to produce nodes. And winner take-all method is adopted to the connection weight adaptation, so that a stored pattern for some pattern gets updated. The proposed method has applied to the student identification card images. In simulation results, the proposed method reduces a possibility of local minima and improves learning speed and paralysis than the conventional error backpropagation learning algorithm.

  • PDF

On Neural Fuzzy Systems

  • Su, Shun-Feng;Yeh, Jen-Wei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.276-287
    • /
    • 2014
  • Neural fuzzy system (NFS) is basically a fuzzy system that has been equipped with learning capability adapted from the learning idea used in neural networks. Due to their outstanding system modeling capability, NFS have been widely employed in various applications. In this article, we intend to discuss several ideas regarding the learning of NFS for modeling systems. The first issue discussed here is about structure learning techniques. Various ideas used in the literature are introduced and discussed. The second issue is about the use of recurrent networks in NFS to model dynamic systems. The discussion about the performance of such systems will be given. It can be found that such a delay feedback can only bring one order to the system not all possible order as claimed in the literature. Finally, the mechanisms and relative learning performance of with the use of the recursive least squares (RLS) algorithm are reported and discussed. The analyses will be on the effects of interactions among rules. Two kinds of systems are considered. They are the strict rules and generalized rules and have difference variances for membership functions. With those observations in our study, several suggestions regarding the use of the RLS algorithm in NFS are presented.

Physiological Neuro-Fuzzy Learning Algorithm for Face Recognition

  • Kim, Kwang-Baek;Woo, Young-Woon;Park, Hyun-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.50-53
    • /
    • 2007
  • This paper presents face features detection and a new physiological neuro-fuzzy learning method by using two-dimensional variances based on variation of gray level and by learning for a statistical distribution of the detected face features. This paper reports a method to learn by not using partial face image but using global face image. Face detection process of this method is performed by describing differences of variance change between edge region and stationary region by gray-scale variation of global face having featured regions including nose, mouse, and couple of eyes. To process the learning stage, we use the input layer obtained by statistical distribution of the featured regions for performing the new physiological neuro-fuzzy algorithm.

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF