• Title/Summary/Keyword: Fuzzy inference systems (FIS)

Search Result 23, Processing Time 0.019 seconds

Designing a Fuzzy Expert System with a Hybrid Approach to Select Operational Strategies in Project-Based Organizations with a Selected Competitive Priority

  • Javanrad, Ehsan;Pooya, Alireza;Kahani, Mohsen;Farimani, Nasser Motahari
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • This research was conducted in order to solve the problem of selecting an operational strategy for projects in project-based organizations by designing a fuzzy expert system. In the current research, we first determined the contributing parameters in operational strategy of project-based organizations based on existing research literature and experts' opinion. Next, we divided them into two groups of model inputs and outputs and the rules governing them were determined by referring to research literature and educational instances. In order to integrate rules, the revised Ternary Grid (revised TG) and expert opinions were applied according to a hybrid algorithm. The Ultimate rules were provided in Fuzzy Inference System format (FIS). In this FIS, proper manufacturing decisions are recommended to the user based on selected competitive priority and also project properties. This paper is the first study in which rules and relations governing the parameters contributing operational strategy in project-based organizations are acquired in a guided integrated process and in the shape of an expert system. Using the decision support system presented in this research, managers of project-based organizations can easily become informed of proper manufacturing decisions in proportion with selected competitive priority and project properties; and also be ensured that theoretical background and past experiences are considered.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.