• Title/Summary/Keyword: Fuzzy genetic algorithm

Search Result 611, Processing Time 0.028 seconds

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

GA based Sequential Fuzzy Modeling Using Fuzzy Equalization and Linguistic Hedge (퍼지 균등화와 언어적 Hedge를 이용한 GA 기반 순차적 퍼지 모델링)

  • 김승석;곽근창;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.827-832
    • /
    • 2001
  • In this paper, we propose a sequentially optimization method for fuzzy inference system using fuzzy equalization and linguistic hedge. The fuzzy equalization does not require the usual learning step for generating fuzy rules. However, it is too sensitive for the given input-output data set. So, we adopt a sequential scheme which sequentially optimizes the fuzzy inference system. Here, the parameters of fuzzy membership function obtained from the fuzzy equalization are optimized by the genetic algorithm, and then they are also modified to increase the performance index using the linguistic hedge. Finally, we applied it to rice taste data and got better results than previous ones.

  • PDF

A Matrix-Based Genetic Algorithm for Structure Learning of Bayesian Networks

  • Ko, Song;Kim, Dae-Won;Kang, Bo-Yeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.135-142
    • /
    • 2011
  • Unlike using the sequence-based representation for a chromosome in previous genetic algorithms for Bayesian structure learning, we proposed a matrix representation-based genetic algorithm. Since a good chromosome representation helps us to develop efficient genetic operators that maintain a functional link between parents and their offspring, we represent a chromosome as a matrix that is a general and intuitive data structure for a directed acyclic graph(DAG), Bayesian network structure. This matrix-based genetic algorithm enables us to develop genetic operators more efficient for structuring Bayesian network: a probability matrix and a transpose-based mutation operator to inherit a structure with the correct edge direction and enhance the diversity of the offspring. To show the outstanding performance of the proposed method, we analyzed the performance between two well-known genetic algorithms and the proposed method using two Bayesian network scoring measures.

A study on the Obstacle Avoidance for a Biped Walking Robot Using Genetic-Fuzzy Algorithm (퍼지와 유전알고리즘을 이용한 이족보행로봇의 방해물 회피에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.304-306
    • /
    • 2001
  • This paper presents the obstacle avoidance of a biped walking robot using GA-Fuzzy algorithm. In the case of our previous studies the surface has been assumed to be flat. For the case of the environment with obstacles, however, the walking robot might be unnatural. Thus, we considered the surface contained obstacles that the robot can pass through. We propose the optimal leg trajectory data-base by using genetic algorithm and optimal leg trajectory movement about obstacles that exist in front of the robot using fuzzy approach. It is shown that the robot can move more naturally on the surface that contains obstacles.

  • PDF

Vibration Control Performance Evaluation of Semi-active Outrigger Damper System (준능동 아웃리거 댐퍼시스템의 진동제어 성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Parallel Genetic Algorithms (계층적 경쟁기반 병렬 유전자 알고리즘을 이용한 퍼지집합 퍼지모델의 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2097-2098
    • /
    • 2006
  • In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique

  • Oh, Sung-Kwun;Park, Seok-Beom;Kim, Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.362-373
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of the fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, tuning of the scaling factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based NFN. The developed approach is applied to an inverted pendulum nonlinear system where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

Speed Control of 3-Phase Induction Motor using Fuzzy-PID Controller Based on Genetic Algorithms (유전자 알고리즘에 의해 동조된 Fuzzy-PID제어기를 이용한 3상 유도전동기의 속도제어)

  • Ahn, Tea-Chon;Sang, Rok-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.502-504
    • /
    • 1998
  • This paper proposes the method that estimate optimally the parameters of Fuzzy-PID controller using genetic Algorithm. The controller is designed with the proposed method, and then is applied to 3-phase induction motor. Simulation results show that proposed method is more excellent then FPID and PID.

  • PDF

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF