• 제목/요약/키워드: Fuzzy genetic algorithm

검색결과 611건 처리시간 0.028초

유전자-퍼지 논리를 사용한 도립진자의 제어 (A Control of Inverted pendulum Using Genetic-Fuzzy Logic)

  • 이상훈;박세준;양태규
    • 한국정보통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.977-984
    • /
    • 2001
  • 본 논문에서는 유전자-퍼지 제어 알고리즘에 대하여 논의하고 그 성능을 평가하였다. 이 알고리즘은 퍼지 논리와 유전자알고리즘의 융합된 형태이며, 제어 대상으로는 도립진자 시스템을 모델링 하였다. 퍼지 제어기는 두 개의 입력과 한 개의 출력 변수를 설계하기 위해 적용되며, GA(Genetic Algorithm)는 퍼지 규칙과 소속 함수를 선택, 교차, 돌연변이의 진화 연산을 통해 최적화한다. 컴퓨터 시뮬레이션에 퍼지 제어의 경우 초기 함수 f(0.3, 0.3)일 때 최대 언더슈트가 $-5.0 \times 10^{-2}[rad]$, 최대 오버슈트가 $3.92\times10^{-2}[rad]$으로 측정되었으나, 유전자 퍼지 알고리즘의 경우 최대 오버슈트와 언더슈트가 각각 0.0[rad]으로 측정되었다. 또한 정상상태 도달시간이 퍼지제어의 경우 2.12[sec], 유전자-퍼지 알고리즘은 1.32[sec]로 비교적 안정적으로 나타났다. 컴퓨터 시뮬레이션으로 이 알고리즘을 도립진자 시스템에 적용시키고, 그 성능의 우수성과 효율성을 증명하였다.

  • PDF

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

하이브리드 유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 설계 (Design of Auto-Tuning Fuzzy Logic Controllers Using Hybrid Genetic Algorithms)

  • 류동완;권재철;박성욱;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.126-129
    • /
    • 1997
  • This paper propose a new hybrid genetic algorithm for auto-tunig auzzy controller improving the performance. In general, fuzzy controller used pre-determine d moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controller, using hybrid genetic algorithms. The object of the proposed algorithm is to promote search efficiency by overcoming a premature convergence of genetic algorithms. Hybrid genetic algorithm is based on genetic algorithm and modified gradient method. Simulation results verify the validity of the presented method.

  • PDF

GA-Fuzzy Algorithm에 의한 세탁기 모터의 제어 (Control of the Washing Machineos Motor by the GA-Fuzzy Algorithm)

  • 이재봉;김지현;박윤서;선희복
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.3-12
    • /
    • 1995
  • A controller utilizing fuzzy logic is developed to control the speed of a motor in a washing machine by choosing an appropriate phase. Due to the hardship imposed on obtaining a result from a relation established for inputs, present speed and present rate of speed, and ouput, a phase, of the system that can be tested against an experimental result, it is impossible to apply a genetic algorithm to fine-tune the fuzzy logic controller. To avoid this difficulty, a proper assumption that the parameters of an if-part of a primary fuzzy logic controller have a functional relationship with an error between computed values and experimental ones in made. Setting up of a fuzzy relationship between the parameters and the errors is then achieved through experimentally obtained data. Genetic Algorithm is then applied to this secondary fuzzy logic controller to verify the fuzzy logic. In the verification process, the primary fuzzy logic controller is used in obtaining experimental results. In this way the kind of difficulty in obtaining enough experimental values used to verify the fuzzy logic with genetic algorithm is gotten around. Selection of the parameters that would produce the least error when using the secondary fuzzy logic controller is done with applying genetic algorithm to the then-part of the controller. In doing so the optimal values for the parameters of the if-part of the primary fuzzy logic controller are assumed to be contained. The experimental result presented in the paper validates the assumption.

  • PDF

혼합형 유전 알고리즘을 이용한 퍼지 안정화 제어기의 계수동조 기법에 관한 연구 (A Study on the Parameters Tuning Method of the Fuzzy Power System Stabilizer Using Genetic Algorithm and Simulated Annealing)

  • 이흥재;임찬호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권12호
    • /
    • pp.589-594
    • /
    • 2000
  • The fuzzy controllers have been applied to the power system stabilizer due to its excellent properties on the nonlinear systems. But the design process of fuzzy controller requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This process is time consuming task. This paper presents an parameters tuning method of the fuzzy power system stabilizer using the genetic algorithm and simulated annealing(SA). The proposed method searches the local minimum point using the simulated annealing algorithm. The proposed method is applied to the one-machine infinite-bus of a power system. Through the comparative simulation with conventional stabilizer and fuzzy stabilizer tuned by genetic algorithm under various operating conditions and system parameters, the robustness of fuzzy stabilizer tuned by proposed method with respect to the nonlinear power system is verified.

  • PDF

A Strategy of modeling for fermentation process by using genetic-fuzzy system

  • 나정걸;이태화;장용근;정봉현
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.177-180
    • /
    • 2000
  • An algorithm for modeling of yeast fermentation process using genetic-fuzzy algorithm is presented in this work. The algorithm involves developing the fuzzy modeling of the process and model update capability against the system change. The membership functions of state variables and specific rates and the decision table were generated using genetic algorithm. This algorithm could replace the complex mathematical model to simple fuzzy model and cope with the change of process characteristics well.

  • PDF

Design of Fuzzy Scaling Gain Controller using Genetic Algorithm

  • Hyunseok Shin;Lee, Sungryul;Hyungjin Kang;Cheol Kwon;Park, Mignon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.474-478
    • /
    • 1998
  • This paper proposes a method which can resolve the problem of exisiting fuzzy PI controller using optimal scaling gains obtained by genetic algorithm. The new method adapt a fuzzy logic controller as a high level controller to perform scaling gain algorithm between two pre-determined sets.

  • PDF

유전과 기울기 최적화기법을 이용한 퍼지 파라메터의 자동 생성 (Automatic generation of Fuzzy Parameters Using Genetic and gradient Optimization Techniques)

  • 유동완;라경택;전순용;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.515-518
    • /
    • 1998
  • This paper proposes a new hybrid algorithm for auto-tuning fuzzy controllers improving the performance. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a genetic-MGM algorithm. The object of the proposed algorithm is to promote search efficiency by a genetic and modified gradient optimization techniques. The proposed genetic and MGM algorithm is based on both the standard genetic algorithm and a gradient method. If a maximum point don't be changed around an optimal value at the end of performance during given generation, the genetic-MGM algorithm searches for an optimal value using the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algorithms. Simulation results verify the validity of the presented method.

  • PDF

Design of Fuzzy-Sliding Model Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyn
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.58-65
    • /
    • 2001
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that he selected solution become the global optimal solution by optimizing the Akaikes information criterion expressing the quality of the inference rules. The trajectory tracking simulation and experiment of the polishing robot show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides reliable tracking performance during the polishing process.

  • PDF

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.