• Title/Summary/Keyword: Fuzzy function

Search Result 1,657, Processing Time 0.032 seconds

Establishment of Sewage Collection Measure and Charging Automation System (분뇨수거량 계량 및 청소요금시스템)

  • Hong, Dae-Seung;Lee, Jang-Hun;Kang, Sun-Hong;Yim, Hwa-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.487-492
    • /
    • 2010
  • In this study, our system that the volume of collected human waste in the septic tank truck is measured accurately and the fee of disposing human waste can be calculated by using measured results has been developed. The level sensor and its circuits which can measure the height of the tank, the hand-held system that can be used by workers easily and simply with micro-controller have been developed. Also, this system has been built in the receipt printing function to charge for disposal fee. Even when working on a sloping field, this system can measure the accurate collected volume of human waste in the tank using the X-Y axis angle sensor. The results of this study expect that the popular complaints that generated from human waste can be reduced, the exportation possibility of our specialized systems can acquire foreign currency.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Moving Object Tracking Using Co-occurrence Features of Objects (이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we propose an object tracking system which can be convinced of moving area shaped on objects through color sequential images, decided moving directions of foot messengers or vehicles of image sequences. In static camera, we suggests a new evaluating method extracting co-occurrence matrix with feature vectors of RGB after analyzing and blocking difference images, which is accessed to field of camera view for motion. They are energy, entropy, contrast, maximum probability, inverse difference moment, and correlation of RGB color vectors. we describe how to analyze and compute corresponding relations of objects between adjacent frames. In the clustering, we apply an algorithm of FCM(fuzzy c means) to analyze matching and clustering problems of adjacent frames of the featured vectors, energy and entropy, gotten from previous phase. In the matching phase, we also propose a method to know correspondence relation that can track motion each objects by clustering with similar area, compute object centers and cluster around them in case of same objects based on membership function of motion area of adjacent frames.

  • PDF

Fingerprint Identification Algorithm using Pixel Direction Factor in Blocks (블록별 화소방향성분을 이용한 지문의 동일성 판별 알고리즘)

  • Cho Nam-Hyung;Lee Joo-Shin
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper, fingerprint identification algorithm using pixel direction factor in blocks is proposed to minimize false acceptance ratio and to apply security system. The proposed algorithm is that a fingerprint image is divided by 16 blocks, then feature parameters which have direct factors of $0^{\circ},\;45^{\circ},\;90^{\circ}\;and\;135^{\circ}$ is extracted for each block. Membership function of a reference fingerprint and an input fingerprint for the extracted parameters is calculated, then identification of two fingerprint is distinguished using fuzzy inference. False acceptance ratio is evaluated about different fingerprints of In kinds regardless of sex and shape which are obtained from adults, and false rejection ratio is evaluated about fingerprints which are obtained by adding fingerprints of 10 kinds on different fingerprints of 100 kinds. The experiment results is that false acceptance ratio is average $0.34\%$ about experiment of 4,950 times, and false rejection ratio is average $3.7\%$ about experiment of 1,000 times. The proposed algerian is excellent for recognition rate and security.

An Optimal System Configuration Using Intelligent Agent on Ubiquitous Environment (유비쿼터스 환경에서 지능 에이전트를 이용한 최적 시스템 구성)

  • Kim Doo-Ywan;Roh Eun-Young;Chung Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.567-572
    • /
    • 2005
  • Recently, owing to miniaturization of computer and popularization of internet, ubiquitous computing is attracting considerable attention. In ubiquitous environment, user can receive desired information service anywhere, any time. With the advent of ubiquitous age through popularization of internet, it becomes important how to provide user with ubiquitous environment, and what and how to provide to user. In this paper, method to automatically select device most suitable for user in ubiquitous environment is offered. search agents search peripherals, make a list by function, and transmit to serve. Serve learn the transmitted information through intelligent system. If user input information in the form of linguistic according to the list, serve select device suitable for work environment, and compose the system through IP address. This was realize through practical example, experimented and confirmed.

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

Enhancing Existing Products and Services Through the Discovery of Applicable Technology: Use of Patents and Trademarks (제품 및 서비스 개선을 위한 기술기회 발굴: 특허와 상표 데이터 활용)

  • Seoin Park;Jiho Lee;Seunghyun Lee;Janghyeok Yoon;Changho Son
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.1-14
    • /
    • 2023
  • As markets and industries continue to evolve rapidly, technology opportunity discovery (TOD) has become critical to a firm's survival. From a common consensus that TOD based on a firm's capabilities is a valuable method for small and medium-sized enterprises (SMEs) and reduces the risk of failure in technology development, studies for TOD based on a firm's capabilities have been actively conducted. However, previous studies mainly focused on a firm's technological capabilities and rarely on business capabilities. Since discovered technologies can create market value when utilized in a firm's business, a firm's current business capabilities should be considered in discovering technology opportunities. In this context, this study proposes a TOD method that considers both a firm's business and technological capabilities. To this end, this study uses patent data, which represents the firm's technological capabilities, and trademark data, which represents the firm's business capabilities. The proposed method comprises four steps: 1) Constructing firm technology and business capability matrices using patent classification codes and trademark similarity group codes; 2) Transforming the capability matrices to preference matrices using the fuzzy function; 3) Identifying a target firm's candidate technology opportunities using the collaborative filtering algorithm; 4) Recommending technology opportunities using a portfolio map constructed based on technology similarity and applicability indices. A case study is conducted on a security firm to determine the validity of the proposed method. The proposed method can assist SMEs that face resource constraints in identifying technology opportunities. Further, it can be used by firms that do not possess patents since the proposed method uncovers technology opportunities based on business capabilities.

An Efficient and Secure Authentication Scheme with Session Key Negotiation for Timely Application of WSNs

  • Jiping Li;Yuanyuan Zhang;Lixiang Shen;Jing Cao;Wenwu Xie;Yi Zheng;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.801-825
    • /
    • 2024
  • For Internet of Things, it is more preferred to have immediate access to environment information from sensor nodes (SNs) rather than from gateway nodes (GWNs). To fulfill the goal, mutual authentication scheme between user and SNs with session key (SK) negotiation is more suitable. However, this is a challenging task due to the constrained power, computation, communication and storage resources of SNs. Though lots of authentication schemes with SK negotiation have been designed to deal with it, they are still insufficiently secure and/or efficient, and some even have serious vulnerabilities. Therefore, we design an efficient secure authentication scheme with session key negotiation (eSAS2KN) for wireless sensor networks (WSNs) utilizing fuzzy extractor technique, hash function and bitwise exclusive-or lightweight operations. In the eSAS2KN, user and SNs are mutually authenticated with anonymity, and an SK is negotiated for their direct and instant communications subsequently. To prove the security of eSAS2KN, we give detailed informal security analysis, carry out logical verification by applying BAN logic, present formal security proof by employing Real-Or-Random (ROR) model, and implement formal security verification by using AVISPA tool. Finally, computation and communication costs comparison show the eSAS2kN is more efficient and secure for practical application.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.