• 제목/요약/키워드: Fuzzy function

검색결과 1,657건 처리시간 0.03초

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어 (Load Frequency Control using Parameter Self-Tuning fuzzy Controller)

  • 탁한호;추연규
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.

영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계 (Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques)

  • 배종수;오성권;김현기
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

Design of Bi-directional RDM-DMX512 Converter for LED Lighting Control

  • Hung, Nguyen Manh;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권2호
    • /
    • pp.106-115
    • /
    • 2013
  • LED lighting control system using unidirectional DMX512 (digital multiplex with 512 pieces of information)) protocol has been the most popular. Nowadays, the user's consumption has been upgrading to the more intelligent system but the upgrading process does not affect the existing infrastructure. There were many researches use the additional communication for the feedback communication way such as WiFi, Controller Area Network (CAN), Power Line Communication (PLC), etc but all researches had inherent disadvantages that created the independent feedback with the existing DMX512 system. Our paper represents the novel method that uses the remote device management (RDM) protocol to associate the additional feedback with existent DMX512 infrastructure in the one system. The data in DMX512 frame sending to the DMX512 client is split and repacked to become the RDM packet. This RDM packet is transferred to the RDM monitor console and the response RDM packet is converted to the DMX512 frame for control DMX512 client devices. This is the closed loop control model which uses the bidirectional convertibility between RDM packet and DMX512 frame. The proposed method not only upgrades the feedback control function for the old DMX512 system without changing the existent infrastructure, but also solves compatible problems between new RDM devices and old DMX512 devices and gives the low cost solution for extending DMX512 universe.

임무수행 경과에 따른 항공기 생존성 평가기법 연구 (A Study of the Evaluating Method for the Survivability of Aircraft during Mission Completion)

  • 윤봉수
    • 한국국방경영분석학회지
    • /
    • 제22권2호
    • /
    • pp.166-181
    • /
    • 1996
  • Aircraft survivability is determined by the susceptibility and the vulnerability. The aircraft susceptibility and vulnerability depend upon the hardware and software factors. Each of the hardware and software factors consisted of the qualitative and quantitative attributes varies according to the time of the mission. In order to establish the mathermatical model to analyze and evaluate the aircraft survivability, qualitative factors have to be transformed into quantitative factors. Even if many researches in the area of dynamic concept analysis and conversion of qualitative factors into the quantitative factors has been insufficient. This research enhances these insufficient area by developing a reliable aircarft survivability analysis method. The major areas of this research are as follows. First, a method for the conversion of the qualitative factors into the quantitative factors is developed by combining the Fuzzy Set Theory concept and the Delphi Technique. Second, by using the stochastic network diagram for the dynamic survivability analysis, the aircraft survivability and the probability of kill are calculated from the state probability for the situation during mission. The advantage of the analysis technique developed in this research includes ease of use and flexibility. In other words, in any given aircraft's mission execution under any variable probability density function, the developed computer program is able to analyze and evaluate the aircraft survivability.

  • PDF

Modeling, Dynamic Analysis and Control Design of Full-Bridge LLC Resonant Converters with Sliding-Mode and PI Control Scheme

  • Zheng, Kai;Zhang, Guodong;Zhou, Dongfang;Li, Jianbing;Yin, Shaofeng
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.766-777
    • /
    • 2018
  • In this paper, a sliding mode and proportional plus integral (SM-PI) control combined with self-sustained phase shift modulation (SSPSM) for LLC resonant converters is presented. The proposed control scheme improves the transient response while preserving good steady-state performance. An averaged large signal model of an LLC converter with the ZVS modulation technique is developed for the SM control design. The sliding surface is obtained based on the input-output linearization concept. A system identification method is adopted to obtain the transform function of the LLC resonant converter, which is used to design the PI control. In order to reduce the inherent chattering problem in the steady state, the combined SM-PI control strategy is derived with fuzzy control, where the SM control is responsive during the transient state while the PI control prevails in the steady state. The combination of SSPSM and the SM-PI control provides ZVS operation, robustness and a fast transient response against step load variations. Simulation and experimental results validate the theoretical analysis and the attractive features of the proposed scheme.

ECAM Control System Based on Auto-tuning PID Velocity Controller with Disturbance Observer and Velocity Compensator

  • Tran, Quang-Vinh;Kim, Won-Ho;Shin, Jin-Ho;Baek, Woon-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.113-118
    • /
    • 2010
  • This paper proposed an ECAM (Electronic cam) control system which has simple and general structure. The proposed cam controller adopted the linear and polynomial curve-fitting method to generates a smooth cam profile curve function. Smooth motion trajectory of master actuator guarantees the good performance of slave motion and has an important effect on the interpolation quality of ECAM. The auto-tuning PID velocity controller was applied to overcome the uncertainties in ECAM, and the gains of the controller are updated continuously to ensure the consistency of system performance under varying working conditions. The robustness of system against the varying load torque disturbances and noises is guaranteed by using the load torque disturbance observer to suppress the disturbance on master actuator. The velocity compensator was applied to compensate the degradation of performance of slave motion caused from the varying driving speed of master motion. The stability and validity of the proposed ECAM control system was verified by simulation results.

A neuron computer model embedded Lukasiewicz' implication

  • Kobata, Kenji;Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.449-449
    • /
    • 2000
  • Many researchers have studied architectures for non-Neumann's computers because of escaping its bottleneck. To avoid the bottleneck, a neuron-based computer has been developed. The computer has only neurons and their connections, which are constructed of the learning. But still it has information processing facilities, and at the same time, it is like as a simplified brain to make inference; it is called "neuron-computer". No instructions are considered in any neural network usually; however, to complete complex processing on restricted computing resources, the processing must be reduced to primitive actions. Therefore, we introduce the instructions to the neuron-computer, in which the most important function is implications. There is an implication represented by binary-operators, but general implications for multi-value or fuzzy logics can't be done. Therefore, we need to use Lukasiewicz' operator at least. We investigated a neuron-computer having instructions for general implications. If we use the computer, the effective inferences base on multi-value logic is executed rapidly in a small logical unit.

  • PDF

Gamma correction FCM algorithm with conditional spatial information for image segmentation

  • Liu, Yang;Chen, Haipeng;Shen, Xuanjing;Huang, Yongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4336-4354
    • /
    • 2018
  • Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.