• 제목/요약/키워드: Fuzzy environment

검색결과 784건 처리시간 0.035초

최적의 퍼지제어규칙을 얻기위한 퍼지학습법 (A Learning Algorithm for Optimal Fuzzy Control Rules)

  • 정병묵
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.399-407
    • /
    • 1996
  • A fuzzy learning algorithm to get the optimal fuzzy rules is presented in this paper. The algorithm introduces a reference model to generate a desired output and a performance index funtion instead of the performance index table. The performance index funtion is a cost function based on the error and error-rate between the reference and plant output. The cost function is minimized by a gradient method and the control input is also updated. In this case, the control rules which generate the desired response can be obtained by changing the portion of the error-rate in the cost funtion. In SISO(Single-Input Single- Output)plant, only by the learning delay, it is possible to experss the plant model and to get the desired control rules. In the long run, this algorithm gives us the good control rules with a minimal amount of prior informaiton about the environment.

퍼지-확장칼만필터를 이용한 위치추정 (Localization using Fuzzy-Extended Kalman Filter)

  • 박성용;박종훈;왕해운;노진홍;허욱열
    • 전기학회논문지
    • /
    • 제63권2호
    • /
    • pp.277-283
    • /
    • 2014
  • This paper proposes robot localization using Fuzzy-Extended Kalman Filter algorithm of the mobile robots equipped with least sensors. In order to improve the accuracy of the localization, we usually add the sensors or equipment. However, it increases the simulation time and expenses. This paper solves this problem using only the odometer and ultrasonic sensors to get the localization with the Fuzzy-Extended Kalman Filter algorithm method. By inputting the robot's angular velocity, sensor data variation, and residual errors into the fuzzy algorithm, we get the sensor weight factor to decide the sensor's importance. The performance of the designed method shows by the simulation and Pioneer 3-DX mobile robot test in the indoor environment.

원격 감시용 카메라의 자동 조향을 위한 Fuzzy 제어 (Fuzzy control of camera pan tilt device for remote surveillance system)

  • 정우태;박영수;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.811-814
    • /
    • 1993
  • The development of fuzzy pan/tilt controller for remote handling in hostile environment is presented in this paper. In remote handling, control of the camera system is somewhat tedious and time consuming. Operators should do the two tasks of manipulating teleoperator and camera pan/tilt at the same time. By automating pan/tilt control, we expect operators could concentrate only on remote operation. When operators control camera pan/tilt they use simple linguistic rules such as "If the position of end effector on TV monitor is at the edge of the screen, control pan/tilt to display the end effector near the center of the screen." Such a rule is similar to fuzzy logic, so we used fuzzy logic controller to control camera pan/tilt. pan/tilt.

  • PDF

자기 학습 능력을 가진 퍼지 제어기를 이용한 차량의 속력 제어기 개발 (A SPEED CONTROLLER FOR VEHICLES USING FUZZY CONTROL ALGORITHM WITH SELF0LEARNING)

  • 정승현;김상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.880-883
    • /
    • 1996
  • This paper suggests a speed control algorithm for the ICC(Intelligent Cruise Controller) system. The speed controller is designed using the fuzzy controller which shows the good performance in nonlinear system having the complex mathematical model. The fuzzy controller was equipped with the capability of a self-learning in real time in order to maintain the good performance of the speed controller in a time-varying environment the self-learning properties and the performance of the fuzzy controller are showed via computer simulation. The suggested fuzzy controller will be applied to the PRV-III which is our test vehicle.

  • PDF

A Study on the Fuzzy Controller for an Unmanned Surface Vessel Designed for Sea Probes

  • Park, Soo-Hong;Kim, Jong-Kwon;Lee, Won-Boo;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.586-589
    • /
    • 2005
  • Recently, the applications of unmanned system are steadily increasing. Unmanned automatic system is suitable for routine mission such as reconnaissance, environment monitoring, resource conservation and investigation. Especially, for the ocean environmental probe mission, many ocean engineers had scoped with the routine and even risky works. The unmanned surface vessel designed for sea probes can replace the periodic and routine missions such as water sampling, temperature and salinity measuring, etc. In this paper, an unmanned surface vessel was designed for ocean environmental probe missions. A classical and an adaptive fuzzy control system were designed and tested for the unmanned surface vessel. The design methodologies and performance of the surface vessel and fuzzy control algorithm were illustrated and verified with this unmanned vessel system designed for sea probes.

  • PDF

인간 운용자 제어시스템의 퍼지-뉴럴 모델링 (Fuzzy-Neural Modeling of a Human Operator Control System)

  • 이석재;유준
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.474-480
    • /
    • 2007
  • This paper presents an application of intelligent modeling method to manual control system with human operator. Human operator as a part of controller is difficult to be modeled because of changes in individual characteristics and operation environment. So in these situation, a fuzzy model developed relying on the expert's experiences or trial and error may not be acceptable. To supplement the fuzzy model block, a neural network based modeling error compensator is incorporated. The feasibility of the present fuzzy-neural modeling scheme has been investigated for the real human based target tracking system.

Design of Multivariable Fuzzy Control System for Automatic Navigation of Ship

  • Lee, Jae-Hyun;Tak, Han-Ho;Lee, Sang-Bae
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.433-440
    • /
    • 2001
  • 본 논문에서는 다변수 퍼지 제어 시스템 이용한 선박의 자동 항해 시스템을 제안한다. 제안된 다변수 퍼지 제어 시스템은 세 개의 인력과 두 개의 출력을 가지는 서브시스템으로 구성되어지며, 제안된 시스템의 효과성을 증명하기 시뮬레이션을 통해 동적인 환경에서도 스스로 장애물을 인식하고 회피할 수 있음을 보였다.

  • PDF

Fuzzy 환경하에서의 상호작용적 다목적 의사결정 (Interactive Multiobjective Decision Making under Fuzzy Environment)

  • 이상완;김재연
    • 산업경영시스템학회지
    • /
    • 제13권22호
    • /
    • pp.51-57
    • /
    • 1990
  • A new interactive multiobjective decision making technique, which is called the fuzzy sequential proxy optimization technique, has been proposed. This technique is the revised version the sequential proxy optimization technique that the decision-maker's marginal rates of substitution is interpreted as type of L-R fuzzy numbers. It used to the square of normalized scalar product as the doptimalilry condition. However, this technique ignores the imprecise nature of a decision-maker's judgement of marginal rates of substitution. Also, it have a shortcoming that can be only applied over three objective functions. In this paper, considering the imprecise nature of a decision-maker's judgement, we presents an interactive fuzzy decision-making method on the basis of the decision-maker's MRS presented through the use of five types of membership functions including non-linear functions. FORTRAN programs that run in conversational mode are developed to implement man-machine interactive procedure.

  • PDF

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

2 자유도 상추 수확 로봇 시스템 개발 (Development of a 2-DOF Robot System for Harvesting a Lettuce)

  • 조성인;장성주;류관희;남기찬
    • Journal of Biosystems Engineering
    • /
    • 제25권1호
    • /
    • pp.63-70
    • /
    • 2000
  • In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automation technologies for harvesting , transporting and grading need to be developed. This study was conducted to develop harvesting process automation system profitable to a competitive price. 1. Manipulator and end-effector are to be designed and fabricated , and fuzzy logic controller for controlling these are to be composed. 2. The entire system constructed is to be evaluated through a performance test. A robot system for harvesting a lettuce was developed. It was composed of a manipulator with 20DOF (degrees of freedom) an end-effector, a lettuce feeding conveyor , an air blower , a machine vision device, 6 photoelectric sensors and a fuzzy logic controller. A fuzzy logic control was applied to determined appropriate grip force on lettuce. Leaf area index and height index were used as input parameters, and voltage was used as output parameter for the fuzzy logic controller . Success rate of the lettuce harvesting system was 93.06% , and average harvesting time was about 5 seconds per lettuce.

  • PDF