• Title/Summary/Keyword: Fuzzy decision tree

Search Result 59, Processing Time 0.025 seconds

Oriental Medicine-based Health Pre-Diagnosis System using Fuzzy Decision Tree (퍼지 의사 결정 트리를 이용한 한의학 기반의 건강 사전 진단 시스템)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1519-1524
    • /
    • 2021
  • In this paper, we propose a method that uses fuzzy decision tree based health pre-diagnosis system of oriental medicine. The proposed fuzzy decision tree based health pre-diagnosis system uses the data from the past which has been pre-trained to get the boundary values based on entropy then, when the user inputs the symptoms, the top 5 diseases that causes those symptoms are extracted. With the extracted top 5 diseases, the system provides information on those diseases with the cause and how to treat them with folk remedies. The database of the diseases and their symptoms is established with the information based on the various books that the oriental doctor recommended then reviewed by the oriental doctor for confirmation. By utilizing the data from the past to train the symptoms of the diseases, the proposed oriental medicine-based health pre-diagnosis system method could provide more accurate diagnosis results faster.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.

Data Mining Algorithm Based on Fuzzy Decision Tree for Pattern Classification (퍼지 결정트리를 이용한 패턴분류를 위한 데이터 마이닝 알고리즘)

  • Lee, Jung-Geun;Kim, Myeong-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1314-1323
    • /
    • 1999
  • 컴퓨터의 사용이 일반화됨에 따라 데이타를 생성하고 수집하는 것이 용이해졌다. 이에 따라 데이타로부터 자동적으로 유용한 지식을 얻는 기술이 필요하게 되었다. 데이타 마이닝에서 얻어진 지식은 정확성과 이해성을 충족해야 한다. 본 논문에서는 데이타 마이닝을 위하여 퍼지 결정트리에 기반한 효율적인 퍼지 규칙을 생성하는 알고리즘을 제안한다. 퍼지 결정트리는 ID3와 C4.5의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법이다. 특히, 퍼지 규칙은 속성 축에 평행하게 판단 경계선을 결정하는 방법으로는 어려운 속성 축에 평행하지 않는 경계선을 갖는 패턴을 효율적으로 분류한다. 제안된 알고리즘은 첫째, 각 속성 데이타의 히스토그램 분석을 통해 적절한 소속함수를 생성한다. 둘째, 주어진 소속함수를 바탕으로 ID3와 C4.5와 유사한 방법으로 퍼지 결정트리를 생성한다. 또한, 유전자 알고리즘을 이용하여 소속함수를 조율한다. IRIS 데이타, Wisconsin breast cancer 데이타, credit screening 데이타 등 벤치마크 데이타들에 대한 실험 결과 제안된 방법이 C4.5 방법을 포함한 다른 방법보다 성능과 규칙의 이해성에서 보다 효율적임을 보인다.Abstract With an extended use of computers, we can easily generate and collect data. There is a need to acquire useful knowledge from data automatically. In data mining the acquired knowledge needs to be both accurate and comprehensible. In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of non-axis-parallel decision boundaries, which are difficult to do using attribute-based classification methods.In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets including the IRIS data, the Wisconsin breast cancer data, and the credit screening data. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.

A Study on the Design of Binary Decision Tree using FCM algorithm (FCM 알고리즘을 이용한 이진 결정 트리의 구성에 관한 연구)

  • 정순원;박중조;김경민;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1536-1544
    • /
    • 1995
  • We propose a design scheme of a binary decision tree and apply it to the tire tread pattern recognition problem. In this scheme, a binary decision tree is constructed by using fuzzy C-means( FCM ) algorithm. All the available features are used while clustering. At each node, the best feature or feature subset among these available features is selected based on proposed similarity measure. The decision tree can be used for the classification of unknown patterns. The proposed design scheme is applied to the tire tread pattern recognition problem. The design procedure including feature extraction is described. Experimental results are given to show the usefulness of this scheme.

  • PDF

Context-Aware Security Service using FCM Clustering and Multivariate Fuzzy Decision Tree (FCM 클러스터링과 다변량 퍼지결정트리를 이용한 상황인식 보안 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1527-1530
    • /
    • 2009
  • 유비쿼터스 환경의 확산에 따른 다양한 보안문제의 발생은 센서의 정보를 이용한 상황인식 보안 서비스의 필요성을 증대시키고 있다. 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링과 다변량 퍼지 결정트리 (Multivariate Fuzzy Decision Tree)를 이용하여 센서의 정보를 분류함으로써 사용자의 상황을 인식하고, 사용자가 처한 상황에 따라 다양한 수준의 보안기술을 유연하게 적용할 수 있는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존에 많이 연구되어 오던 고정된 규칙을 기반으로 하는 RBAC(Role-Based Access Control)계열의 모델보다 더욱 유연하고 적합한 결과를 보여주고 있다.

An Application of Fuzzy Decision Trees for Hierarchical Recognition of Handwriting Symbols (퍼지 결정 트리를 이용한 온라인 필기 문자의 계층적 인식)

  • 전병환;김성훈;김재희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.132-140
    • /
    • 1994
  • SCRIPT (Symbol/Character Recognition In Pen-based Technology) is an algorithm for on-line recognition of handwriting Hangeul. English upperacase letters, decimal digits, and some keyboard symbols. The shape of handwriting symbols has a large variation even when written by the same person. Though the feature analysis approach using a conventional decision tree is efficient, it is not robust under shape variations and prone to misclassification. Thus, a new method to overcome this shortcoming is necessary. In this paper, a feature analysis algorithm using two fuzzy decision trees which utilize the hierarchical property of the pattern is proposed. The first tree is used to represent the stroke shape, and the other tree is used to represent the relation between the strokes. since this method stores various possibilities. it is robust to shape variations and can readily modify false selections. In addition, there is a large increase in the recognition rate of high-level patterns due to low-level candidated. Experimental results show 91% recognition rate for Hangeul at the recognition speed of 0.33 second per character, and the recognition rate of alphanumerics and some keyboard symbols is 95% at 0.08 second per symbol. This is 8~18% increase in the recognition rate over th method not applying fuzzy decision trees.

  • PDF

FMECA using Fault Tree Analysis (FTA) and Fuzzy Logic (결함수분석법과 퍼지논리를 이용한 FMECA 평가)

  • Kim, Dong-Jin;Shin, Jun-Seok;Kim, Hyung-Jun;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1529-1532
    • /
    • 2007
  • Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of FMEA which includes a criticality analysis. The criticality analysis is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. However, there are several limitations. Measuring severity of failure consequences is subjective and linguistic. Since The result of FMECA only gives qualitative and quantitative informations, it should be re-analysed to prioritize critical units. Fuzzy set theory has been introduced by Lotfi A. Zadeh (1965). It has extended the classical set theory dramatically. Based on fuzzy set theory, fuzzy logic has been developed employing human reasoning process. IF-THEN fuzzy rule based assessment approach can model the expert's decision logic appropriately. Fault tree analysis (FTA) is one of most common fault modeling techniques. It is widely used in many fields practically. In this paper, a simple fault tree analysis is proposed to measure the severity of components. Fuzzy rule based assessment method interprets linguistic variables for determination of critical unit priorities. An rail-way transforming system is analysed to describe the proposed method.

  • PDF

A Fuzzy Decision Tree for Data Mining (데이터 마이닝을 위한 퍼지 결정트리)

  • 이중근;민창우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.63-65
    • /
    • 1998
  • 사회 전 분야에서 데이터가 폭발적으로 증가함에 따라 데이터를 이해하고 분석하는 새로운 자동적이고 지능적인 데이터 분석 도구와 기술이 필요하게 되었다. KDD(Knowledge Discovery in Databases)는 이러한 필요로부터 데이터에서 유용하고 이해 가능한 지식을 추출하는 연구이다. 데이터 마이닝(Data Mining)은 KDD에서 가장 중요한 단계로 데이터로부터 지식을 추출하는 단계이다. 데이터 마이닝에서 생성된 지식은 좋은 분류율을 가져야하고 이해하기 쉬워야한다. 본 논문에서는 퍼지 결정트리(FDT : Fuzzy Decision Tree)에 기반한 효율적인 데이터 마이닝 알고리즘을 제안한다. FDT의 각 링크는 속성(attribute) 값을 갖는 퍼지 집합이며, EDT의 각 경로는 퍼지 규칙을 생성한다. 제안된 알고리즘은 ID3의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법으로 히스토그램에 이루어진다. 마지막으로 제안된 방법의 타당성을 검증하기 위해 표준적인 패턴 분류 벤치마크 데이터에 대한 실험 결과를 보인다.

  • PDF

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.