• 제목/요약/키워드: Fuzzy data mining

검색결과 90건 처리시간 0.022초

The Design and Implementation of Anomaly Traffic Analysis System using Data Mining

  • Lee, Se-Yul;Cho, Sang-Yeop;Kim, Yong-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.316-321
    • /
    • 2008
  • Advanced computer network technology enables computers to be connected in an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, which makes it vulnerable to previously unidentified attack patterns and variations in attack and increases false negatives. Intrusion detection and analysis technologies are thus required. This paper investigates the asymmetric costs of false errors to enhance the performances the detection systems. The proposed method utilizes the network model to consider the cost ratio of false errors. By comparing false positive errors with false negative errors, this scheme achieved better performance on the view point of both security and system performance objectives. The results of our empirical experiment show that the network model provides high accuracy in detection. In addition, the simulation results show that effectiveness of anomaly traffic detection is enhanced by considering the costs of false errors.

Support Vector Machine based on Stratified Sampling

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Support vector machine is a classification algorithm based on statistical learning theory. It has shown many results with good performances in the data mining fields. But there are some problems in the algorithm. One of the problems is its heavy computing cost. So we have been difficult to use the support vector machine in the dynamic and online systems. To overcome this problem we propose to use stratified sampling of statistical sampling theory. The usage of stratified sampling supports to reduce the size of training data. In our paper, though the size of data is small, the performance accuracy is maintained. We verify our improved performance by experimental results using data sets from UCI machine learning repository.

A Co-Evolutionary Computing for Statistical Learning Theory

  • Jun Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.281-285
    • /
    • 2005
  • Learning and evolving are two basics for data mining. As compared with classical learning theory based on objective function with minimizing training errors, the recently evolutionary computing has had an efficient approach for constructing optimal model without the minimizing training errors. The global search of evolutionary computing in solution space can settle the local optima problems of learning models. In this research, combining co-evolving algorithm into statistical learning theory, we propose an co-evolutionary computing for statistical learning theory for overcoming local optima problems of statistical learning theory. We apply proposed model to classification and prediction problems of the learning. In the experimental results, we verify the improved performance of our model using the data sets from UCI machine learning repository and KDD Cup 2000.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Native API 빈도 기반의 퍼지 군집화를 이용한 악성코드 재그룹화 기법연구 (Malicious Codes Re-grouping Methods using Fuzzy Clustering based on Native API Frequency)

  • 권오철;배성재;조재익;문종섭
    • 정보보호학회논문지
    • /
    • 제18권6A호
    • /
    • pp.115-127
    • /
    • 2008
  • Native API(Application Programming Interfaces)는 관리자 권한에서 수행되는 system call의 일종으로 관리자 권한을 획득하여 공격하는 다양한 종류의 악성코드를 탐지하는데 사용된다. 이에 따라 Native API의 특징을 기반으로한 탐지방법들이 제안되고 있으며 다수의 탐지방법이 교사학습(supervised learning) 방법의 기계학습(machine learning)을 사용하고 있다. 하지만 Anti-Virus 업체의 분류기준은 Native API의 특징점을 반영하지 않았기 때문에 교사학습을 이용한 탐지에 적합한 학습 집합을 제공하지 못한다. 따라서 Native API를 이용한 탐지에 적합한 분류기준에 대한 연구가 필요하다. 본 논문에서는 정량적으로 악성코드를 분류하기 위해 Native API를 기준으로 악성코드를 퍼지 군집화하여 재그룹화하는 방법을 제시한다. 제시하는 재그룹화 방법의 적합성은 기계학습을 이용한 탐지성능의 차이를 기존 분류방법을 결과와 비교하여 검증한다.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

의사결정트리 기법을 이용한 터널 보조공법 선정방안 연구 (A Study on the Effective Selection of Tunnel Reinforcement Methods using Decision Tree Technique)

  • 김종규;사공명;이준석;이용주
    • 대한토목학회논문집
    • /
    • 제26권4C호
    • /
    • pp.255-264
    • /
    • 2006
  • 터널 시공시 지반상황이 불량하거나 불확실한 지질정보로 인한 붕락사고를 방지하기 위하여 지보재와 병용하여 터널보조공법을 사용한다. 현재 보조공법에 관련된 전문가 시스템은 인공신경망, 퍼지추론 등의 연구가 진행되었고 터널 기술자에게 보조공법을 결정하는데 많은 도움을 주고 있는 상황이나 보조공법을 결정하는데 있어 정량적인 평가항목을 정하는데 어려움이 많은 것으로 파악되고 있다. 따라서, 본 연구에서는 사회과학, 의료, 금융, 농업 등 다양한 분야에 걸쳐 데이터분석에 이용되는 데이터마이닝 기법을 공학분야에 적용시켜 보조공법 설계자료를 바탕으로 보조공법의 의사결정 규칙을 추론하고 PDA를 적용한 전문가 시스템을 구축하였다.

데이터 정보를 이용한 흑색 플라스틱 분류기 설계 (Design of Black Plastics Classifier Using Data Information)

  • 박상범;오성권
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.569-577
    • /
    • 2018
  • In this paper, with the aid of information which is included within data, preprocessing algorithm-based black plastic classifier is designed. The slope and area of spectrum obtained by using laser induced breakdown spectroscopy(LIBS) are analyzed for each material and its ensuing information is applied as the input data of the proposed classifier. The slope is represented by the rate of change of wavelength and intensity. Also, the area is calculated by the wavelength of the spectrum peak where the material property of chemical elements such as carbon and hydrogen appears. Using informations such as slope and area, input data of the proposed classifier is constructed. In the preprocessing part of the classifier, Principal Component Analysis(PCA) and fuzzy transform are used for dimensional reduction from high dimensional input variables to low dimensional input variables. Characteristic analysis of the materials as well as the processing speed of the classifier is improved. In the condition part, FCM clustering is applied and linear function is used as connection weight in the conclusion part. By means of Particle Swarm Optimization(PSO), parameters such as the number of clusters, fuzzification coefficient and the number of input variables are optimized. To demonstrate the superiority of classification performance, classification rate is compared by using WEKA 3.8 data mining software which contains various classifiers such as Naivebayes, SVM and Multilayer perceptron.

시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교 (Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data)

  • 이수용;이경중
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.730-736
    • /
    • 2011
  • 본 연구는 순차적인 시계열 자료들에서 가장 최근의 추세가 반영될 수 있는 패턴분류 모델을 설계하였다. 의사결정을 지원하는 데이터마이닝 패턴분류 모델을 설계할 때 통계 기법과 인공지능 기법을 융합한 모델들이 기존의 모델보다 우수함을 입증하였다. 특히 퍼지이론과 융합된 패턴분류 모델들의 적중률이 상대적으로 더 향상되었다. 예를 들어, 통계적 이론을 기반으로 한 SVM모델과 퍼지소속함수와의 결합, 혹은 신경망과 FCM을 결합한 모델들의 성능이 우수하였다. 실험에서 사용한 패턴분류 모델들은 BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, Regression Analysis 등이다. 그리고 데이터베이스는 시계열 속성을 지닌 금융시장의 경제지표 DB(한국, KOSPI200 데이터베이스)와 병원 응급실의 부정맥환자에 대한 심전도 DB(미국 MIT-BIH 데이터베이스)들을 사용하였다.

Document Summarization via Convex-Concave Programming

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.293-298
    • /
    • 2016
  • Document summarization is an important task in various areas where the goal is to select a few the most descriptive sentences from a given document as a succinct summary. Even without training data of human labeled summaries, there has been several interesting existing work in the literature that yields reasonable performance. In this paper, within the same unsupervised learning setup, we propose a more principled learning framework for the document summarization task. Specifically we formulate an optimization problem that expresses the requirements of both faithful preservation of the document contents and the summary length constraint. We circumvent the difficult integer programming originating from binary sentence selection via continuous relaxation and the low entropy penalization. We also suggest an efficient convex-concave optimization solver algorithm that guarantees to improve the original objective at every iteration. For several document datasets, we demonstrate that the proposed learning algorithm significantly outperforms the existing approaches.