• 제목/요약/키워드: Fuzzy control algorithm

검색결과 1,501건 처리시간 0.029초

유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계 (The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index)

  • 오성권;윤기찬;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

전기유변유체댐퍼의 유전자알고리즘에 의해 설계된 퍼지 제어 (Fuzzy control designed GA of a electro-rheology fluid damper)

  • 배종인;박명관;주동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.438-441
    • /
    • 1997
  • This paper studies a semi-active suspension with ER damper controlled Fuzzy Net Controller designed GA(Genetic Algorithm). Apparent viscosity of ERF(Electro-Rheological Fluid) can be changed rapidly by applying electric field. Semi-active suspension for ground vehicles are expected to improve ride quality with less vibration. This paper deals with a two-degree -of-freedom suspension using the ER damper for a quarter vehicle system. In this paper, the GA is applied for generating Fuzzy Net Controllers. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

유전알고리즘을 이용한 이득요소 동조 퍼지 제어기 최적설계 (Optimal Design of Scaling Factor Tuning of Fuzzy Logic Controller Using Genetic Algorithm)

  • 황용원;오진수;박근화;홍영준;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.897-899
    • /
    • 1999
  • This paper presents a scaling factor tuning method to improve the performance of fuzzy logic controller. Tuning rules and reasoning are utilized off-line to determine the scaling factors based on absolute value of the error and its difference. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a dc-servo motor control system. The performance of this control system is demonstrated higher than a conventional fuzzy logic controller(FLC).

  • PDF

퍼지로직제어기를 설계하기 위한 최적 비율 이득 조정방법 (An optimal scaling gain tuning method for designing a fuzzy logic controller)

  • Shin, Hyunseok;Shim, Hansoo;Kwon, Cheol;Kang, Hyungjin;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.192-194
    • /
    • 1996
  • This paper propose an optimal scaling gain tuning method of the fuzzy PI controller using Genetic Algorithm(GA). Scaling gains can reflect the control resolution and fuzziness of input/output variables. By the scaling gain method, the design of a fuzzy logic controller(FLC) can be simplified without affecting the system performance in comparison with multi-decision table method. In designing a fuzzy logic controller, the analytic approach method for the optimization is unavailable. Therefore GA is excellent optimization algorithms for scaling gain tuning. Using this optimal scaling gain tuning method, a good performance can be achieved both in transient and steady state.

  • PDF

퍼지 로직에 의한 궤도차량의 지능제어시스템 설계 (Intelligent control system design of track vehicle based-on fuzzy logic)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

A New Approach to the Design of a Fuzzy Sliding Mode Controller for Uncertain Nonlinear Systems

  • Seo, Sam-Jun;Kim, Dong-Sik;Kim, Dong-Won;Yoo, Ji-Yoon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.646-651
    • /
    • 2004
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved

  • PDF

PID와 자동 학습 퍼지 제어기를 이용한 도립 전자의 제어 (A novel self-organizing fuzzy plus PID type controller with application to inverted pendulum control)

  • 이용노;김태원;서일홍;김기엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.681-686
    • /
    • 1991
  • In this paper, a novel self-organizing fuzzy plus PID control algorithm is proposed and analyzed by extensive computer simulations and experiments with an inverted pendulum. Specifically, the proposed self-organizing fuzzy controller consists of a typical fuzzy reasoning part and self organizing part in which both on-line and off-line algorithms are employed to modify the 'then' part of the fuzzy rules and to decide how much fuzzy rules are to be modified after evaluating the control performance, respecfively. And the fuzzy controller is replaced by a PID controller in a prespecified region near by the set point for good settling actions.

  • PDF

뉴로-퍼지 제어기를 이용한 유압서보시스템의 추적제어 (A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.509-517
    • /
    • 2001
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require and accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is evaluated through a series of experiments for the various types of inputs while applying disturbances to the hydraulic system. The performance of this controller was compared with those of PID and PD controllers. From these results, We observe be said that the position tracking performance of neuro-fuzzy is better those of PID and PD controllers.

  • PDF

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

체내이동형 마이크로 캡술형 내시경 로봇을 위한 Electrostrictive Polymer의 모델링 및 Adaptive fuzzy 알고리듬 개발 (The Modeling and Adaptive fuzzy control of Electrostrictive Polymer for endoscopic microcapsule)

  • 황교일;김훈모;최혁렬;남재도;전재욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.716-722
    • /
    • 2001
  • In this paper, the modeling and control of electrostrictive polymer is introduced for endoscopic microcapsule. The endoscopic microcapsule works in the body, so the material of robot must be no harmful to the body. The electrostrictive polymer satisfies this condition. The modeling and control of endoscope microcapsule must be processed. So the modeling and control of electrostrictive was processed preferentially. The electrostrictive polymer is so flexible that we considered the electrostrictive polymer as flexible membrane. The dynamic equation of flexible membrane is time variant in electrostrictive polymer. It is the reason that the elastic modulus of electrostrictive polymer is very small and changes as deformation of electrostrictive polymer. The control algorithm must overcome these characteristics. So the algorithm of adaptive fuzzy control was used to control. In this paper, we introduced the dynamic modeling and control of electrostrictive polymer. And its deformation is introduced.

  • PDF