• Title/Summary/Keyword: Fuzzy based diagnostic function

Search Result 12, Processing Time 0.021 seconds

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Diagnosis Method for Power Transformer using Intelligent Algorithm based on ELM and Fuzzy Membership Function (ELM 기반의 지능형 알고리즘과 퍼지 소속함수를 이용한 유입변압기 고장진단 기법)

  • Lim, Jae-Yoon;Lee, Dae-Jong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.194-199
    • /
    • 2017
  • Power transformers are an important factor for power transmission and cause fatal losses if faults occur. Various diagnostic methods have been applied to predict the failure and to identify the cause of the failure. Typical diagnostic methods include the IEC diagnostic method, the Duval diagnostic method, the Rogers diagnostic method, and the Doernenburg diagnostic method using the ratio of the main gas. However, each diagnostic method has a disadvantage in that it can't diagnose the state of the power transformer unless the gas ratio is within the defined range. In order to solve these problems, we propose a diagnosis method using ELM based intelligent algorithm and fuzzy membership function. The final diagnosis is performed by multiplying the result of diagnosis in the four diagnostic methods (IEC, Duval, Rogers, and Doernenburg) by the fuzzy membership values. To show its effectiveness, the proposed fault diagnostic system has been intensively tested with the dissolved gases acquired from various power transformers.

Development of Fuzzy Inference-based Deterioration Diagnosis System Using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 퍼지추론 기반 열화진단 시스템 개발)

  • Choi, Woo-Yong;Kim, Jong-Bum;Oh, Sung-Kwun;Kim, Young-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.912-921
    • /
    • 2015
  • In this paper, we introduce fuzzy inference-based real-time deterioration diagnosis system with the aid of infrared thermal imaging camera. In the proposed system, the infrared thermal imaging camera monitors diagnostic field in real time and then checks state of deterioration at the same time. Temperature and variation of temperature obtained from the infrared thermal imaging camera variation are used as input variables. In addition to perform more efficient diagnosis, fuzzy inference algorithm is applied to the proposed system, and fuzzy rule is defined by If-then form and is expressed as lookup-table. While triangular membership function is used to estimate fuzzy set of input variables, that of output variable has singleton membership function. At last, state of deterioration in the present is determined based on output obtained through defuzzification. Experimental data acquired from deterioration generator and electric machinery are used in order to evaluate performance of the proposed system. And simulator is realized in order to confirm real-time state of diagnostic field

Development of Fuzzy Rule-based Liver Function Test Diagnosis System (퍼지 규칙기반 간 기능 검사 해석 시스템의 개발)

  • Kim, Jong-Won;Oh, Kyung-Whan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.155-160
    • /
    • 1992
  • Liver function test is one of the most common tests for diagnosis and follow-up of patients and for heal th screening. Automatic interpretation and suggestions on the diagnostic possibilities contribute to shorten the interpretation time of the test results and help to provide qualified health care. Fuzzy logic has been recently introduced and being spread for these purposes. The present study aims at model Ins the foray rule-based laboratory diagnosis system. The fuzzy rule-based laboratory diagnosis system was applied to the diagnosis regarding liver function test. The system was evaluated by comparing with the stepwise multivariate discriminant function analysis, which showed similar results, and the overall accuracy of the fuzzy diagnosis system was about 80%.

  • PDF

Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme (퍼지-신경망 기반 고장진단 시스템의 설계)

  • Kim, Sung-Ho;Kim, Jung-Soo;Park, Tae-Hong;Lee, Jong-Ryeol;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF

Development of electro hydraulic ballast remote valve control system with diagnostic function using redundant modbus communication (이중화 모드버스 통신을 이용한 퍼지기반 고장진단기능을 가진 선박 밸러스트 전기유압식 원격밸브제어시스템 개발)

  • Kim, Jong Hyun;Yu, Yung Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.292-301
    • /
    • 2014
  • This paper describes development of distributed type independent electro-hydraulic ballast valve remote control system with diagnostic function based on fuzzy inference using redundant Modbus communication and ethernet Modbus TCP/IP. Diagnostic function estimate degradation of system components and diagnose system faults, which results in shortage of fault maintenance time and improvement of system safety. Slave devices which control each valve and master device which command, monitor and diagnose slave system are developed. Slave devices are connected to master device with redundant Modbus networks and master device is connected to ship's integrated control system with Modbus TCP/IP. Also this paper describes development of simulator to test and confirm whether developed system can be integrated with ship's integrated control and monitoring system.

Study on the method of safety diagnosis of electrical equipments using fuzzy algorithm (퍼지알고리즘을 이용한 전기전자기기의 안전진단방법에 대한 연구)

  • Lee, Jae-Cheol
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.223-229
    • /
    • 2018
  • Recently, the necessity of safety diagnosis of electrical devices has been increasing as the fire caused by electric devices has increased rapidly. This study is concerned with the safety diagnosis of electric equipment using intelligent Fuzzy technology. It is used as a diagnostic input for the multiple electrical safety factors such as the use current, cumulative use time, deterioration and arc characteristics inherent to the equipment. In order to extract these information in real time, a device composed of various sensor circuits, DSP signal processing, and communication circuit is implemented. The fuzzy logic algorithm using the Gaussian function for each information is designed and compiled to be implemented on a small DSP board. The fuzzy logic receives the four diagnostic information, deduces it by the fuzzy engine, and outputs the overall safety status of the device as a 100-step analog fuzzy value familiar to human sensibility. By experiments of a device that combines hardware and fuzzy algorithm implemented in this study, it is verified that it can be implemented in a small DSP board with human-friendly fuzzy value, diagnosing real-time safety conditions during operation of electric equipment. In the future, we expect to be able to study more intelligent diagnostic systems based on artificial intelligent with AI dedicated Micom.

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.

Automated Clinical best Result Analysis System - Application to liver function test - (퍼지이론을 이용한 임상검사 자동분석에 관한 연구 - 간기능검사 결과 자동분석시스템 -)

  • 차은종;이태수
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.341-348
    • /
    • 1993
  • Automated system to analyze liver function test results is presented based on fuzzy logic knowledge. Clinician's knowledge and experience was first expressed in linguistic terms fol- lowed by conversion to numerical values to create membership functions of disease possibility for each test item and liver disease. Membership functions were then compensated for different relative importances of test items. Liver diseases considered were acute viral hepatitis (AVH), chronic persistent hepatitis(CPH), chronic active hepatitis(CAH), and liver cirrhosis(LC), Liver function test results of alanine aminotransferase(ALT), aspartate amino- transferase(AST) , glutamate dehydrogenase(GDH), ornithine carbamyltransferase(OCT) , ALT/AST, and 10* GDH/ALT in 218 patients were analyzed by the present system, welch resulted in 80% accuracy. AVH and CAH showed the highest 93 % and the lowest 58% ac- curacies, respectively, which was similar to the clinician's expectation. The simple mathemat- ical formulation of the present system would enable an easy implementation in commercial analysis instruments. Also, the identical fuzzy logic can be applied to similar diagnostic envi- ronments in general.

  • PDF

Classification of PVC(Premature Ventricular Contraction) using Radial Basis Function network (Radial Basis Function 네트워크를 이용한 PVC 분류)

  • Lee, J.;Lee, K.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.439-442
    • /
    • 1997
  • In our research, we will extract diagnostic parameters by LPC method and wavelet transform. Then, we will design artificial neural network which is based on RBF that can express input features in terms of fuzzy. Because PVC(Premature Ventricular Contraction) has possibility to cause heart attack, the detection of PVC is a very significant problem. To deal with this problem, LPC method which gives different coefficients or different morphologies and wavelet transform which has superior localization nature of time-frequency, are used to extract effective parameters or classification of normal and PVC. Because RBF network can allocate an input feature to the membership degree of each category, total system will be more flexible.

  • PDF