• Title/Summary/Keyword: Fuzzy Variable

Search Result 540, Processing Time 0.027 seconds

FUZZY REGRESSION TOWARDS A GENERAL INSURANCE APPLICATION

  • Kim, Joseph H.T.;Kim, Joocheol
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.343-357
    • /
    • 2014
  • In many non-life insurance applications past data are given in a form known as the run-off triangle. Smoothing such data using parametric crisp regression models has long served as the basis of estimating future claim amounts and the reserves set aside to protect the insurer from future losses. In this article a fuzzy counterpart of the Hoerl curve, a well-known claim reserving regression model, is proposed to analyze the past claim data and to determine the reserves. The fuzzy Hoerl curve is more flexible and general than the one considered in the previous fuzzy literature in that it includes a categorical variable with multiple explanatory variables, which requires the development of the fuzzy analysis of covariance, or fuzzy ANCOVA. Using an actual insurance run-off claim data we show that the suggested fuzzy Hoerl curve based on the fuzzy ANCOVA gives reasonable claim reserves without stringent assumptions needed for the traditional regression approach in claim reserving.

Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function (펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

Analysis for Electrical Fire Possibility Using Fuzzy Logic with Input Variables of Overcurrent and Saturation Time in the Indoor Wiring (전기배선에서 과전류와 포화시간을 입력변수로 갖는 퍼지기반 전기화재가능성 분석)

  • Kim, Eun-Jin;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • The study is aimed to develop fuzzy logic system that has overcurrent and saturation time as input variable and possibility of electrical fire as output variable by making bad conductor area with physical damage to indoor wiring. Most previous studies focused on thermal characteristics depending on the current size and no study considered the current size and saturation time at the same time. Therefore, the paper made into account current value and saturation time together. To this end, it created bad conductor area half the size of IV conductor (1.6 mm) on purpose and transmit electrical current from 10A to 60A by unit of 2A to find out the thermal characteristics and saturation time for current. Based on the data that came out, the study applied fuzzy logic and established the current and saturation time as input variable and chance of fire as output variable. As a result, the center of area of the system that depended only on the existing current value was 75 while the system that applied both current and saturation time presented the chance of fire at 92. It is found that the chance of bad conductor area and deteriorated insulation of electrical wire had current and saturation time as important variables. The data can be used as basic data like deteriorated wire insulation or operation features of circuit breaker in investigating the cause of electrical fire.

An analysis of satisfaction index on computer education of university based on Fuzzy Decision Making Method (퍼지의사결정법에 기반한 대학의 컴퓨터교육 만족도 분석)

  • Ryu, Kyung-Hyun;Hwang, Byung-Kon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.502-509
    • /
    • 2013
  • In Information age, The academic liberal art computer education course set up goals to promote computer literacy and develop the ability to cope with changes in information society and improve productivity and national competitiveness. In this paper, we analyze on discovering of decisive variable and satisfaction index to have a influence on computer education on university students. As a preprocessing course, the proposed method selects optimum variable using correlation based feature selection(CFS) of machine learning tool based on Java and we calculate weighted value for each variable and then, we generate the optimal variable using weighted value based on fuzzy decision making method. we proposed Fuzzy decision making method in analysis of the academic liberal art computer education satisfaction index data and checked the accuracy of the satisfaction evaluation by using recall and precision.

A Sensorless MPPT Control Using an Adaptive Neuro-Fuzzy Logic for PV Battery Chargers (태양광 배터리 충전기를 위한 적응형 신경회로망-퍼지로직 기반의 센서리스 MPPT 제어)

  • Kim, Jung-Hyun;Kim, Gwang-Seob;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this paper, the sensorless MPPT algorithm is proposed where the performance of varied duty ratio change has been improved using multi-layer neuro-fuzzy that aligns with neuro-fuzzy based optimized membership function. Since the change of duty ratio of sensorless MPPT is varied by using the neuro-fuzzy, the MPPT response speed is faster than the convectional method and is able to reduce the steady-state ripple. The neuro fuzzy controller has the response characteristics which is superior to the existing fuzzy controller, because of the usage of the optimal width of the fuzzy membership function. The effectiveness of the proposed method has been verified by simulations and experimental results.

ON THEIL'S METHOD IN FUZZY LINEAR REGRESSION MODELS

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.185-198
    • /
    • 2016
  • Regression analysis is an analyzing method of regression model to explain the statistical relationship between explanatory variable and response variables. This paper propose a fuzzy regression analysis applying Theils method which is not sensitive to outliers. This method use medians of rate of increment based on randomly chosen pairs of each components of ${\alpha}$-level sets of fuzzy data in order to estimate the coefficients of fuzzy regression model. An example and two simulation results are given to show fuzzy Theils estimator is more robust than the fuzzy least squares estimator.

Design of an Adaptive Fuzzy Logic Controller using Sliding Mode Scheme

  • Kwak, Seong-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Using a sole input variable simplifies the design process for the fuzzy logic controller(FLC). This is called single-input fuzzy logic controller(SFLC). However it is still deficient in the capability of adapting to the varying operating conditions. We here design a single-input adaptive fuzzy logic controller(AFLC) using a switching function of the sliding mode control. The AFLC can directly incorporate linguistic fuzzy control rules into the controller. Hence some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules can be adjusted by an adaptive law. In the proposed AFLC center values of fuzzy sets are directly adjusted by a fuzzy logic system. We prove that 1) its closed-loop system is globally stable in the sense that all signals involved are bounded and 2)its tracking error converges to zero asymptotically. We perform computer simulation using a nonlinear plant.

  • PDF

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.

Improved Neural Network-based Self-Tuning Fuzzy PID Controller for Sensorless Vector Controlled Induction Motor Drives (센서리스 유도전동기의 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Han, Hoo-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1165-1168
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for sensorless vector controlled induction motor drives. MRAS(Model Reference Adaptive System) is used for rotor speed estimation. When induction motor is continuously used long time. its electrical and mechanical parameters will change, which degrade the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. The proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using DS1102 board show the robustness of the proposed controller to parameter variations.

  • PDF

ANN Sensorless Control of Induction Motor with FLC-FNN Controller (FLC-FNN 제어기에 의한 유도전동기의 ANN 센서리스 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.117-122
    • /
    • 2006
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also this paper is proposed. speed control of induction motor using FLC-FNN and estimation of speed using ANN controller. The back Propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.