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ABSTRACT

Using a sole input variable simplifies the design process for the fuzzy logic controller(FLC). This is called
single-input fuzzy logic controller (SFLC). However, it is still deficient in the capability of adapting to the
varying operating conditions. We here design a single-input adaptive fuzzy logic controller( AFLC) using a
switching function of the sliding mode control. The AFLC can directly incorporate linguistic fuzzy control
rules into the controller. Hence, some parameters of the membership functions characterizing the linguistic
terms of the fuzzy rules can be adjusted by an adaptive law. In the proposed AFLC, center values of fuzzy
sets are directly adjusted by a fuzzy logic system. We prove that 1) its closed-loop system is globally stable
in the sense that all signals involved are bounded and 2) its tracking error converges to zero asymptotically.
We perform computer simulation using a nonlinear plant.

1. Introduction

Nowadays, the controlled plants become more
complex and large-scaled, and this tendency requires
the development of more intelligent control schemes in
the control field. To cope with this tendency of the
industry, an adaptive scheme is a good alternative. The
adaptive controller automatically adjusts some control
parameters so that the desired control performance is
obtained.

Most FLCs use the error and the change-of-error as
fuzzy input variables regardless of the complexity of
controlled plants [1,2]. However, these FLCs are
suitable for simple lower order plants. That is, in case
of complex higher order plants, all process states are
commonly required as fuzzy input variables for a good
performance. However, it needs a huge number of
control rules, membership functions, and scaling
factors. In order to simplify the design process of the
FLCs, the SFLC was proposed in [3-5]. That is, the
proposed SFLC uses only a single input variable for the
FLC of an arbitrary controlled plant with the minimum
phase property. However, it is still deficient in the
capability of adapting to the variation of operating
conditions. It can be improved by adding an adaptive
scheme.

Compared to conventional adaptive controllers, the
AFLC has some advantages. It is capable of
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incorporating  linguistic fuzzy information from
experienced human operators into a closed-loop control
system. This is especially useful to the complex systems
with high nonlinearities and uncertainties. It also can
improve the control performance.

Some researches for AFLCs were performed by
Wang [6-8]. He proposed various AFLCs using direct or
indirect scheme. In his AFLCs, the excessive control
actions could be derived in the supervisory control
input, which was introduced to guarantee the stability of
the closed-loop system. Furthermore some tuning
parameters for the desired control performance were
required in his researches.

We propose a new AFLC that requires only a sole
fuzzy input variable, and uses the sliding mode control
scheme instead of a stable error dynamics.

This paper is organized as follows. Firstly we
briefly explain the design method for a SFLC in
Section II. In Section I, an AFLC incorporating the
scheme of the SFLC is designed by utilizing a
switching function of the sliding mode control. In
Sections IV and V, we represent computer simulations
and concluding remarks, respectively.

2. Single-input FL.C (SFLC)

Most controlled plants with the minimum phase
property have skew-symmetric type rule tables as they
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were controlled by a FLC using two input variables of
error and change-of-error [1, 3]. This property allows us
to design a SFLC.

Let the controlled process be a system withx-th order
(linear or nonlinear) state equation:

XM= fx, §)+b(x, Hu(f)+d(),

y=x, ey
with
x=[x, x5, =, %]
:[x’ )é’ TR x(n-l)]T’ ' (2)

where f(x, ¢) and b(x, t) are partially known continuous
functions, d(r) is the unknown external disturbance,
and u(f) < R and y(¢r) =R are the input and output of the
system, respectively. x(f) R" is the process state
vector.

The control problem is to force y(f) to follow a given
bounded reference input signal x(f). Let ¢(f) be the
tracking error vector as follows:

e(t) = x(t) —xA?)

“fe, & v, VI G)

Now a SFLC can be designed as follows [3]:
The control rule form for a SFLC is as follows.

RFIf D, is LD* then u is LUK,

where k=1, 2, ---, N, and LD and LU are the linguistic
values taken by the general signed distance D, and the
control input u, respectively. And the general signed
distance is defined as follows [3]:

b - =D+ e+ Leé+Ae (4)
=
JUHA2_ + 3+ A

where 4,>0,i=1, 2, -+, n-1, is a positive constant that
determines the slope of a switching hyperplane. Then
control rules is simply established on an one-
dimensional space like Table 1.

In Table 1, NB, NS, ZR, PS, and PB represents
Negative Big, Negative Small, ZeRo, Positive Small,
and Positive Big, respectively. This is called single-
input fuzzy logic controller(SFLC).

The proposed SFLC has many advantages: It needs
only one input variable regardless of complexity of the

Table 1. Rule table for a SFLC

D, NB NS 7R S PB
u PB PS 7R NS NB
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controlled plants. Furthermore, as expressed in Eq. (4),
the single input variable has knowledge of all state
variables of a controlled plant. Next, the number of
tuning parameters for the FLC is greatly decreased since
the control rule table is constructed on an one-
dimensional space. Hence, tuning of rules, membership
functions, and scaling factors is much easier than the
case of conventional FLCs using two or more input
variables. The SFLC is also equivalent to the sliding
mode control with a boundary layer [3-5]. The fact
implies that the closed-loop system with a SFLC is
stable.

As a result, the SFLC provides a simpler method for
the design of conventional FLCsand gives the desired
control performance.

3. Design of Adaptive FLC

An adaptive controlier is one in which some control
parameters are updated by a leamning rule. It can
improve the overall control performance in the presence
of large uncertainties or unknown variations in plant
dynamics.

Now we design an AFLC that are fuzzy logic systems
equipped with an adaptation algorithm. Compared to
conventional adaptive controllers, the AFLC has some
advantages: It is capable of incorporating linguistic
fuzzy information from experienced human operators
into a closed-loop control system. It also improves the
control performance.

Fuzzy [F-THEN rules can directly be expressed by a
rigorous mathematical equation. This fact allows us to
design an AFLC that adjusts some control parameters
using the scheme of the SFLC.

The following two Lemmas are derived from the
SFLC explained in Section 2.

Lemma 1. The SFLC with the singleton fuzzifier,
product inference, and the height defuzzifier is
summarized as the following form:

ok
2 B, (D)

u(Dy) = ()

- :
% (4, 4 (D,)

X Lok
where ¥ is the point in R at which g+ achieves its
maximum value (assume that g, (#°) = 1), and N is the

number of one-dimensional control rules.
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Lemma 2. Consider the following fuzzy basis
function(FBF):

i, (D))
v ©)
3, (1,,4D))

ey =

Then a fuzzy logic system (5) can be rewritten as Eq.

.

wD)=0,"Z(D,), (7

where €,=[u', u?, -, "] is an adjustable parameter
vector, and E(D,)=[EYD,), EWD,), -, ENDY" is a
regressive vector composed of FBFs of Eq. (6).

Proofs of two Lemmas are omitted since they can
easily be proved from [8].

The fuzzy logic systems in the form of Eq. (5) or (7)
are universal approximators [8]. Thus, the fuzzy logic
system (7) is qualified as a building block of an AFLC
for a nonlinear system. We also see from Eq. (7) that
the linguistic information from experienced human
operators in the form of the fuzzy IF-THEN rules can
directly be incorporated into the controller. That is, the
linguistic information from experienced human
operators can directly be expressed by rigorous
mathematical formula in an AFLC.

The control purpose is to determine a feedback
control input

u=u(D,| G,)+u, (8)

such that the tracking error should be as small as
possible under some constraints, where 1, is an AFLC
and u, is an auxiliary control input to ensure the closed-
loop stability.

Consider a switching function S,= 0 that was used in
Eq. (4).

S/:O
:e(n_1)+2w.|€(n—2)+ +/1Q€ +/1|€.

9

We determine the control law «* when the functions
/. b, and d of the controlled plant (1) are known. Here
two cases must independently be considered: ;=0 and
NEXIA

In the case of =0, the control law is easily
determined as the following equation.

-1
w* = b~l[—f—d+x§,">—"z /1,-6")). (10)
i=1

When §; # 0, the control law can be derived from the

concept of the sliding mode control. That is, it can be
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determined by the following sliding condition:
5.8 <-n|s), (n

where 77 is a positive constant. From Eq. (9),
S=eM+ 4 eVt e Re

n-1 .
=el+'y lie(’)

i=1

1 .
= frbu+d-x+'Y Ae®, (12)
i=1

Multiplying both sides of Eq. (12) by S,
. IR
S,81= S,(f+bu+d—x§1")+"z Aie(t))
i=1

<-nlsl. (13)

From Eq. (13), we can get the following control law:

n-1 .
Sb"(—f—d+x&")— b3 lie(’)—anor (8,>0)
i=1
u*

n—1
2b"(—f—d+x&")— p3 ,’{ie(i) + njfor (5,<0)
i=1 (14)

Combining Eq. (10) and (14), we obtain the following
closed form for the control law.
} (15)

n—1
T Ael-p sgn(S)n,,

i=1

w =b—l[_f_d+xg,n)-

where
1 for §;#0
= 16
p 0 for §,=0 (16)
and
NMw = 1. (17

Commonly, we don't know exact information about
the controlled plant (1) except for the sign of b(x, 1).
Adding and subtracting bu" in the right side of Eq.
12),

*

. -1
Sy =frbutu)+d—xP+'s de®+bu*—bu
'y Ya d 2 i (18)

= b(uf—u*) +bu,-psgn(SHn,,,

Consider an optimal parameter ©," and minimum
approximation error, &, related to the control input:

0, = arg ming [sup, | uAD,| B,) —u'], (19)
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and

e=u -u, (20)

where 1 = u(D,| ©,). g, has a very small value due to
the universal approximating property of the fuzzy logic
system [§8]. That is,

L&) =1u -u" <€,

@h

where £€>0 is a small value. And Eq. (18) can be
rewritten as

8= blur—u") + bE,+ bu, — p sgn(SH T

=b®, =+ be,+ bu, —p sgn(S)My, (22)

where @,= ©,— 0, and =, is the FBF that is defined by
the Lemma 2.

Now we replace the u(D,] ©,) by a fuzzy logic
system (7) and develop an adaptive law to update the
parameter vector ©,.

Theorem. Consider the control law (15) and
switching function (9). If we choose the auxiliary

control input u, as
u,< —sgn(bS)| &, (23)

then the proposed system is stable in the sense of the

Lyapunov and the parameter adaptation law is given as

), = — sgn(b) 5,5, (24)

where 7is a positive constant that determines a kind of

learning rate.

Proof. Consider the following Lyapunov function
candidate:

y=lglere (25)
2 2y
Then,
V = Sbe,tbu,~sgn(S)) + ’-”;'dﬂ( &, + sgn(bySiE).
(26)

From Eq. (26), we can easily obtain the parameter
adaptation law (24) because @,= O, Also if we
choose the auxiliary control input such that the given
condition (23) is satisfied, then Eq. (26) is summarized
as follows:

V< —pi 27
Thus, the proposed AFLC is stable in the sense of the
Lyapunov. O
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Fig. 1. The inverted pendulum control system
4. Simulation Example

Now we reveal the performance of the proposed
AFLC via computer simulation. We consider a
tracking problem for the inverted pendulum system.
Fig. 1 shows the plant composed of a pole and a cart.
The cart moves on the rail tracks in horizontal
direction.

The control objective is to balance the pole starting
from an arbitrary condition by supplying a suitable
force to the cart. For simplicity, we do not consider the
position of the cart. The plant dynamics is then
expressed as:

5 gsin@+acos@-u,wilcosfsind

(28)
1(4/3 —,upcos2 6)
m

= —2— @9

m,tm,

P [
a=—" 30
m,+m, (30)

where g is an acceleration due to gravity(=9.8 m/
sec’), and F is the applied force. m(=1.0kg) and
my(=0.1kg) are masses and [=0.5m) is the pole
length.

Fig. 2 represents the fuzzy sets for the control input
and signed distance. In the case of the SFLC, we used

4 NB NS ZR PS PB

uand D,
0 >
-Kg 0 Ko

Fig. 2. The fuzzy sets for simulations
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Fig. 3. Comparison of tracking performances
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Fig. 4. Comparison of control inputs

6 and 50 for K, of s and D,, respectively. The center
values of membership functions for the control input are
automatically adjusted by an adaptation law in the
AFLC. Simulation condition of the AFLC is equally set
to the case of the SFLC except for the addition of the
parameter adaptation law. We use the product inference
and the height defuzzification.

Figures 3, 4, 5, and 6 show the simulation results of
tracking performances, control inputs, tracking errors,
and phase portraits, respectively. Here (a) and (b) are
the cases of the SFLC and the proposed AFLC,
respectively. As shown in figures, the control
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Fig. 6. Comparison of phase portraits

performance of the proposed AFLC is better than that of
the SFLC. As a results, an adaptive scheme can improve
the performance of the conventional case without any
adaptive scheme.

5. Concluding Remarks

Conventional FLCs had many tuning parameters such
as rules, membership functions, scaling factors, and so
on. We first explained the SFLC using a sole input
variable. It had many advantages. Particularly, it could
greatly decrease the difficulty on the design of the
conventional FLCs. And then we proposed an AFLC
using the scheme of the SFLC. The concept simplified
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the design of the AFLC as well as decreased the number
of tuning parameters for the FLC.

The proposed AFLC was based on a switching
function of the sliding mode control. It had no excessive
control actions as well as small number of tuning
parameters. If the rule base is constructed with
sufficiently many rules, the role of the auxiliary control
input for the closed loop stability will disappear from
the universal approximating property of a fuzzy logic
system. And the closed-loop stability of the proposed
AFLC was ensured in the sense of the Lyapunov.
Finally, we performed a computer simulation using the
inverted pendulum system. Here we showed that the
AFLC can improve the control performance of the
SFLC.
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