• Title/Summary/Keyword: Fuzzy Steering Control

Search Result 90, Processing Time 0.032 seconds

A Preview Predictor Driver Model with Fuzzy Logic for the Evaluation of Vehicle Handling Performance (퍼지로직을 기초로한 차량 조종안정성 평가를 위한 예측 운전자 모델)

  • 김호용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.209-219
    • /
    • 1997
  • A fuzzy driver model based on a preview-predictor and yaw rate is developed. The model is used to investigate the handling performance of two wheel steering system(2WS) and four wheel steering system(4WS) vehicles. The two degree-of- freedom model which has yaw and lateral motion predicts the path of the vehicles. Based upon the yaw rate and lateral deviations, the fuzzy engine describes the human driver's complicated control behavior which is adjusted for the driving environment. Both typical single lane change maneuver and double lane change maneuver are adopted to demonstrate the feasibility of fuzzy driver model.

  • PDF

Intelligent control system design of track vehicle based-on fuzzy logic (퍼지 로직에 의한 궤도차량의 지능제어시스템 설계)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

Design of Fuzzy Membership functions for Adaptive Fuzzy Truck Control (적응적인 퍼지 트럭 제어를 위한 멤버쉽 함수의 설계)

  • Kim Do-Hyeon;Kim Kwang-Baek;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.788-791
    • /
    • 2006
  • Fuzzy theory has been used effectively to control the nonlinear system since Mamdani successively adopted fuzzy theory in the steam-engine control problem in 1973. Truckbacker-upper control problem originally proposed by Nguyen and Widrow become a standard highly nonlinear control problem. In this paper, we designed adaptive fuzzy membership functions for speed control as well as steering control. In other words, an adaptive fuzzy control system for truck backer-upper problem useful for practical adaptation is proposed. Experimental results by simulations prove the effectiveness of the proposed system.

  • PDF

Comparison of Fuzzy and Crisp Controllers Applied to Navigation of a Sailboat

  • Tsubaki, P.;Miyamoto, S.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1242-1245
    • /
    • 1993
  • This paper describes simulation of navigating a sailboat around obstacles to a goal as quickly and safely as possible. Navigation strategies using concepts from fuzzy control are compared with more conventional ones through application at the levels of choosing an optimal heading and steering the sailboat towards that heading.

  • PDF

Study on a New and Effective Fuzzy PID Ship Autopilot

  • Le, Minh-Duc;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1628-1631
    • /
    • 2005
  • Ship Autopilots are usually designed based on the PD and Pill controllers because of simplicity, reliability and easy to construct. However their performance in various environmental conditions is not as good as desired. This disadvantage can be overcome by adjusting works or constructing adaptive controllers. But those methods are complex and not easy to do. This paper presents a new method for constructing a Ship Autopilot based on the combination of Fuzzy Logic Control (FLC) and Linear Control Theory (Pill control). The new Ship Autopilot has the advantages of both the Pill and FLC control methodologies: easy to construct, and optimal control laws can be established based on ship masters' knowledge. Therefore, the new ship autopilot can be well adapted with parameter variations and strong environment effects. Simulation using MATLAB software for a ship with real parameters shows high effectiveness of the Fuzzy Pill autopilot in course keeping and course changing manoeuvres in comparison with the ordinary Pill ship autopilots.

  • PDF

Building of an Intelligent Ship's Steering Control System Based on Voice Instruction Gear Using Fuzzy Inference (퍼지추론에 의한 지능형 음성지시 조타기 제어 시스템의 구축)

  • 서기열;박계각
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1809-1815
    • /
    • 2003
  • This paper presents a human friendly system using fuzzy inference as a Part of study to embody intelligent ship. We also build intelligent ship's steering system to take advantage of speech recognition that is a part of the human friendly interface. It can bring an effect such as labor decrement in ship. In order to design the voice instruction based ship's steering gear control system, we build of the voice instruction based learning(VIBL) system based on speech recognition and intelligent learning method at first. Next, we design an quartermaster's operation model by fuzzy inference and construct PC based remote control system. Finally, we applied the unposed control system to the miniature ship and verified its effectiveness.

The Fuzzy Steering Control Using a Slope Direction Estimation Method for Small Unmanned Ground Vehicle (경사방향 추정 기법을 이용한 소형로봇의 퍼지 조향 제어)

  • Lee, Sang Hoon;Huh, Jin Wook;Kang, Sincheon;Lee, Myung Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.721-728
    • /
    • 2012
  • The tracked SUGVs(Small Unmanned Ground Vehicles) are frequently operated in the narrow slope such as stairs and trails. But due to the nature of the tracked vehicle which is steered using friction between the track and the ground and the limited field of view of driving cameras mounted on the lower position, it is not easy for SUGVs to trace narrow slopes. To properly trace inclined narrows, it is very important for SUGVs to keep it's heading direction to the slope. As a matter of factor, no roll value control of a SUGV can makes it's heading being located in the direction of the slope in general terrains. But, the problem is that we cannot directly control roll motion for SUGV. Instead we can control yaw motion. In this paper, a new slope driving method that enables the vehicle trace the narrow slopes with IMU sensor usually mounted in the SUGV is suggested which including an estimation technique of the desired yaw angle corresponding to zero roll angle. In addition, a fuzzy steering controller robust to changes in driving speed and the stair geometry is designed to simulate narrow slope driving with the suggested method. It is shown that the suggested method is quite effective through the simulation.

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

Fuzzy Navigation Control of Mobile Robot equipped with CCD Camera (퍼지제어를 이용한 카메라가 장착된 이동로봇의 경로제어)

  • Cho, Jung-Tae;Lee, Seok-Won;Nam, Boo-Hee
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.195-200
    • /
    • 2000
  • This paper describes the path planning method in an unknown environment for an autonomous mobile robot equipped with CCD(Charge-Coupled Device) camera. The mobile robot moves along the guideline. The CCD camera is used for the detection of the existence of a guideline. The wavelet transform is used to find the edge of guideline. It is possible for us to do image processing more easily and rapidly by using wavelet transform. We make a fuzzy control rule using image data as an input then determined the position and the navigation of the mobile robot. The center value of guideline is the input of fuzzy logic controller and the steering angle of the mobile robot is the fuzzy controller output. Some actual experiments show that the mobile robot effectively moves to target position by means of the applied fuzzy control.

  • PDF