윈격탐사 영상은 파장대에 따라 나누어진 여러 개의 밴드로부터 수집된 다중분광 이미지 데이터이다. 위성영상 분류는 원격탐사 처리 과정에 있어서 가장 중요한 분석 기법으로써 영상을 구성하는 각각의 화소들 중 비슷한 분광 특성을 갖는 것끼리 집단화시켜주는 방법이다. 본 논문에서는 PFCM 알고리즘을 응용한 원격탐사 영상의 패턴분류 방법에 관하여 연구하였다. PFCM 알고리즘은 각 데이터와 특정 클러스터 중심과의 거리에 대한 소속정도를 고려한 FCM 클러스터링 알고리즘과 데이터와 해당 클러스터 중심과의 거리에 의존하여 패턴의 전형성(typicality)을 고려한 PCM 클러스터링 알고리즘을 결합한 방법이다. 본 연구에서는 분류 항목별 학습데이터를 선정한 후 이를 PFCM 알고리즘에 적용하여 감독분류를 수행하였다. Landsat TM과 IKONOS 원격탐사 위성영상을 이용하여 PFCM 알고리즘의 적용성을 검증하였다. PFCM 알고리즘을 이용한 감독분류는 PCM, FCM 분류방법보다 좋은 결과를 보여주었으며, 또한 전통적인 분류방법인 최대우도분류보다도 정확도가 더 높은 결과를 보여주었다.
생명과학분야에서 마이크로어레이 기술은 세포에서의 RNA 발현 프로파일을 관찰할 수 있도록 함으로써 생명현상의 규명 및 약물개발 등에서 분자수준의 생명현상에 대한 관찰과 분석이 가능해지고 있다. 마이크로어레이 데이터분석에서는 특정한 처리나 과정에서 현저한 특성을 보이는 유전자를 식별하기 위한 분석뿐만 아니라 유전자 전체인 게놈수준에서의 분석도 이루어진다. 약물반응 실험에서는 약물에 대한 게놈수준의 발현 프로파일을 관찰하는 것도 많은 정보를 제공할 수 있다. 약물실험에서는 대조군과 실험군들간에 관심있는 상대적인 발현특성을 갖는 유전자군을 전체적으로 추출하는 것이 필요한 경우가 있다. 예를 들면 정상군은 두개의 실험군에 대해서 중간정도의 발현정도를 갖는 유전자군을 식별하는 분석을 하는 경우, 생물학적인 데이터의 특성상 절대값을 비교하는 방법으로는 유용한 유전자들을 효과적으로 식별해 낼 수 없다. 이 논문에서는 정상군과 실험군들의 발현정도값의 경향을 판단하기 위해서 각 유전자에 대해서 집단별 대표값을 선정하여 퍼지집합으로 집단의 값의 범위를 결정하고, 이를 이용하여 특성 패턴을 갖는 유전자들을 식별해내는 방법을 제안하고, 실제 데이터를 통해서 실험한 결과를 보인다.
Nowadays researchers attach a great importance to the problems concerned with scientific information in the field of science and engineering. There are some reasons for it, that is, ⅰ) the amount of scientific information increases in proportion to the activities of scientists and engineers, so it is difficult to pick up a real valuable information ⅱ) it becomes more important to use a variety of information in proportion to the spread ofthe branch of science ⅲ) since the medium of scientific information is mostly technical papers, it is very difficult to mechanically transact these papers and to keep all documents and scientific informations for a long time. To cope with these difficult situations, many technical skills have been developed, for example, data-base, automatic information retrieval, micro-film and so on. But there are comparatively few investigation on the matter how the researchers who are users and producers think about the systematization of scientific information usage, so this paper investigates the thought and information needs of researchers, and proposes a basis of a method for systematization of scientific information usage. The author inspects the actual conditions of scientific information, reconsider the method which has been used and investigates the matter of how researchers whose interest is closely related to the study of marine affairs think about problems of scientific information usage by thequestionarie of Fuzzy-DEMATEL method. Also, FSM which is method for structuring hierarchy for the several complex problems on the basis of fuzzy sets theory is adopted as a tool of analysis. We can understand the key problems and make a story to solve the systematization of scientific information usage from the results of the analysis and those results will be directly applicable to construct a new system for scientific information usage.
클러스터링은 주어진 임의의 데이터 중에서 유사한 성질을 지닌 데이터를 복수개의 그룹으로 조직화하는 기법이다. 이를 위해 K-Means, Fuzzy C-Means(FCM), Mountain Method(MM) 등과 같은 많은 기법들이 제안되었고 또한 널리 사용되어지고 있다. 그러나 이러한 기법들은 초기값에 따라 클러스터링 결과가 크게 달라지는 단점이 있다. 특히 가장 널리 사용되는 FCM 기법은 잡음 데이터에 취약하며, 주어진 입력 데이터의 클러스터 내부분산을 최소화 하는 방법을 사용하기 때문에 클러스터링 중심의 왜곡 현상이 발생한다. 본 논문에서는 데이터 가중치에 근거한 비례적 근접데이터 병합을 통하여 클러스터 중심 왜곡을 저감하며 초기값에 영향을 받지 않는 클러스터링 기법을 제안한다. 그리고 FCM으로 얻어진 클러스터 중심과 제안기법을 적용하여 얻어진 클러스터 중심에 대한 비교 검토를 통하여 제안기법의 효용성을 확인한다.
본 논문은 연결 지배 집합에 속하는 노드들로 애드혹 망의 위상을 구성하는 완전 분산형 위상 제어 프로토콜을 제시한다. 제안한 프로토콜은 가능한 최소의 노드 수로 위상을 구성할 수 있게 하여 패킷 전송 시 발생하는 간섭을 줄일 수 있다. 제안한 프로토콜의 알고리즘 복잡도는 O(1)이다. 각 노드는 분산된 병렬 볼츠만 기계의 한 노드로서 동작한다. 이 볼츠만 기계의 목적 함수를 연결의 차수와 연결 지배 정도를 표현하는 두 개의 볼츠만 인수로 구성한다. 이 볼츠만 인수들을 정의하기 위해 두 개의 퍼지 집합을 정의한다. 하나는 연결 지배 노드로 이루어진 퍼지 집합이며, 다른 하나는 다중-링 위상 구성이 가능한 노드로 이루어진 퍼지 집합이다. 제안한 프로토콜은 이 두 퍼지 집합의 강한 원소 노드들을 애드혹 망의 클러스터 헤드로 선택한다. 모의 실험을 통해 패킷 손실율과 에너지 소비율 측면에서 제안 프로토콜이 기존 방법에 비해 우수함을 확인하였다.
Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.
In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.
In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.
Park, Jooyoung;Heo, Seongman;Kim, Taehwan;Park, Jeongho;Kim, Jaein;Park, Kyungwook
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권1호
/
pp.44-51
/
2016
Recently, artificial intelligence has reached the level of top information technologies that will have significant influence over many aspects of our future lifestyles. In particular, in the fields of machine learning technologies for classification and decision-making, there have been a lot of research efforts for solving estimation and control problems that appear in the various kinds of portfolio management problems via data-driven approaches. Note that these modern data-driven approaches, which try to find solutions to the problems based on relevant empirical data rather than mathematical analyses, are useful particularly in practical application domains. In this paper, we consider some applications of modern data-driven machine learning methods for portfolio management problems. More precisely, we apply a simplified version of the sparse Gaussian process (GP) classification method for classifying users' sensitivity with respect to financial risk, and then present two portfolio management issues in which the GP application results can be useful. Experimental results show that the GP applications work well in handling simulated data sets.
International Journal of Fuzzy Logic and Intelligent Systems
/
제7권1호
/
pp.1-6
/
2007
The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorporating the idea that the data in a higher density region are more significant than those in a lower density region. In this paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set density estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming) problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated via numerical experiments using real data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.