• 제목/요약/키워드: Fuzzy Sets

검색결과 784건 처리시간 0.022초

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • 제13권2호
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

A Note on Maximal Entropy OWA Operator Weights

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.537-541
    • /
    • 2006
  • In this note, we give an elementary simple proof of the main result of $Full{\acute{e}}rand$ Majlender [Fuzzy Sets and systems 124(2001) 53-57] concerning obtaining maximal entropy OWA operator weights.

  • PDF

A Cluster Validity Index Using Overlap and Separation Measures Between Fuzzy Clusters (클러스터간 중첩성과 분리성을 이용한 퍼지 분할의 평가 기법)

  • Kim, Dae-Won;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제13권4호
    • /
    • pp.455-460
    • /
    • 2003
  • A new cluster validity index is proposed that determines the optimal partition and optimal number of clusters for fuzzy partitions obtained from the fuzzy c-means algorithm. The proposed validity index exploits an overlap measure and a separation measure between clusters. The overlap measure is obtained by computing an inter-cluster overlap. The separation measure is obtained by computing a distance between fuzzy clusters. A good fuzzy partition is expected to have a low degree of overlap and a larger separation distance. Testing of the proposed index and nine previously formulated indexes on well-known data sets showed the superior effectiveness and reliability of the proposed index in comparison to other indexes.

Image Segmentation Based on the Fuzzy Clustering Algorithm using Average Intracluster Distance (평균내부거리를 적용한 퍼지 클러스터링 알고리즘에 의한 영상분할)

  • You, Hyu-Jai;Ahn, Kang-Sik;Cho, Seok-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • 제7권9호
    • /
    • pp.3029-3036
    • /
    • 2000
  • Image segmentation is one of the important processes in the image information extraction for computer vision systems. The fuzzy clustering methods have been extensively used in the image segmentation because it extracts feature information of the region. Most of fuzzy clustering methods have used the Fuzzy C-means(FCM) algorithm. This algorithm can be misclassified about the different size of cluster because the degree of membership depends on highly the distance between data and the centroids of the clusters. This paper proposes a fuzzy clustering algorithm using the Average Intracluster Distance that classifies data uniformly without regard to the size of data sets. The Average Intracluster Distance takes an average of the vector set belong to each cluster and increases in exact proportion to its size and density. The experimental results demonstrate that the proposed approach has the g

  • PDF

Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System (신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측)

  • Bang, Young-Keun;Kim, Jae-Hyoun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제67권1호
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • 제5권6호
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Modeling and Classification of MPEG VBR Video Data using Gradient-based Fuzzy c_means with Divergence Measure (분산 기반의 Gradient Based Fuzzy c-means 에 의한 MPEG VBR 비디오 데이터의 모델링과 분류)

  • 박동철;김봉주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권7C호
    • /
    • pp.931-936
    • /
    • 2004
  • GBFCM(DM), Gradient-based Fuzzy c-means with Divergence Measure, for efficient clustering of GPDF(Gaussian Probability Density Function) in MPEG VBR video data modeling is proposed in this paper. The proposed GBFCM(DM) is based on GBFCM( Gradient-based Fuzzy c-means) with the Divergence for its distance measure. In this paper, sets of real-time MPEG VBR Video traffic data are considered. Each of 12 frames MPEG VBR Video data are first transformed to 12-dimensional data for modeling and the transformed 12-dimensional data are Pass through the proposed GBFCM(DM) for classification. The GBFCM(DM) is compared with conventional FCM and GBFCM algorithms. The results show that the GBFCM(DM) gives 5∼15% improvement in False Alarm Rate over conventional algorithms such as FCM and GBFCM.

Integrated Software Quality Evaluation: A Fuzzy Multi-Criteria Approach

  • Challa, Jagat Sesh;Paul, Arindam;Dada, Yogesh;Nerella, Venkatesh;Srivastava, Praveen Ranjan;Singh, Ajit Pratap
    • Journal of Information Processing Systems
    • /
    • 제7권3호
    • /
    • pp.473-518
    • /
    • 2011
  • Software measurement is a key factor in managing, controlling, and improving the software development processes. Software quality is one of the most important factors for assessing the global competitive position of any software company. Thus the quantification of quality parameters and integrating them into quality models is very essential. Software quality criteria are not very easily measured and quantified. Many attempts have been made to exactly quantify the software quality parameters using various models such as ISO/IEC 9126 Quality Model, Boehm's Model, McCall's model, etc. In this paper an attempt has been made to provide a tool for precisely quantifying software quality factors with the help of quality factors stated in ISO/IEC 9126 model. Due to the unpredictable nature of the software quality attributes, the fuzzy multi criteria approach has been used to evolve the quality of the software.