• Title/Summary/Keyword: Fuzzy Rule-base System

Search Result 154, Processing Time 0.028 seconds

A Study on a Neuro-Fuzzy Controller Design (뉴로-퍼지 제어기 설계 연구)

  • Im, Jeong-Heum;Chung, Tae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

Learning of Fuzzy Rules Using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 퍼지 규칙의 학습)

  • Jeong, Chi-Seon;Sim, Gwi-Bo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.1-10
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verify the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.

  • PDF

Neuro-Fuzzy Algorithm for Nuclear Reactor Power Control : Part I

  • Chio, Jung-In;Hah, Yung-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.52-63
    • /
    • 1995
  • A neuro-fuzzy algorithm is presented for nuclear reactor power control in a pressurized water reactor. Automatic reacotr power control is complicated by the use of control rods because of highly nonlinear dynamics in the axial power shape. Thus, manual shaped controls are usually employed even for the limited capability during the power maneuvers. In an attempt to achieve automatic shape control, a neuro-fuzzy approach is considered because fuzzy algorithms are good at various aspects of operator's knowledge representation while neural networks are efficinet structures capable of learning from experience and adaptation to a changing nuclear core state. In the proposed neuro-fuzzy control scheme, the rule base is formulated based ona multi-input multi-output system and the dynamic back-propagation is used for learning. The neuro-fuzzy powere control algorithm has been tested using simulation fesponses of a Korean standard pressurized water reactor. The results illustrate that the proposed control algorithm would be a parctical strategy for automatic nuclear reactor power control.

  • PDF

An Optimized Multiple Fuzzy Membership Functions based Image Contrast Enhancement Technique

  • Mamoria, Pushpa;Raj, Deepa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1205-1223
    • /
    • 2018
  • Image enhancement is an emerging method for analyzing the images clearer for interpretation and analysis in the spatial domain. The goal of image enhancement is to serve an input image so that the resultant image is more suited to the particular application. In this paper, a novel method is proposed based on Mamdani fuzzy inference system (FIS) using multiple fuzzy membership functions. It is observed that the shape of membership function while converting the input image into the fuzzy domain is the essential important selection. Then, a set of fuzzy If-Then rule base in fuzzy domain gives the best result in image contrast enhancement. Based on a different combination of membership function shapes, a best predictive solution can be determined which can be suitable for different types of the input image as per application requirements. Our result analysis shows that the quality attributes such as PSNR, Index of Fuzziness (IOF) parameters give different performances with a selection of numbers and different sized membership function in the fuzzy domain. To get more insight, an optimization algorithm is proposed to identify the best combination of the fuzzy membership function for best image contrast enhancement.

Co-Evolution of Fuzzy Rules and Membership Functions

  • Jun, Hyo-Byung;Joung, Chi-Sun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.601-606
    • /
    • 1998
  • In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. Futhermore proper fuzzy partitioning is not deterministic ad there is no unique solution. So we propose a co-evolutionary method finding optimal fuzzy rules and proper fuzzy membership functions at the same time. Predator-Prey co-evolution and symbiotic co-evolution algorithms, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. Our algorithm is that after constructing two population groups made up of rule base and membership function, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the propose method to a path planning problem of autonomous mobile robots when moving objects applying the proposed method to a pa h planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

A Fault Diagnostic Expert System for Silicone Oil-filled Transformer Using Dissolved Gas Analysis (유중가스분석법을 이용한 실리콘 유입변압기 고장진단 전문가 시스템)

  • Moon, Jong-Fil;Kim, Jae-Chul;Choi, Joon-Ho;Jun, Young-Jae;Kim, Oun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.374-376
    • /
    • 2001
  • In this paper, we developed the fault diagnostic expert system of silicone-immersed transformer using dissolved gas analysis. The knowledge base module consists of the knowledge using the rule: if Then . The inference engine uses the fuzzy rule for the management of uncertainty of the boundary and rule and derivate the Belief and Plausibility of the normality and fault using Dempster-Shafer theory. The expert system is connected to the database and it can manages the history of gas-data of the transformer.

  • PDF

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

A Study on the Determination System of Process Conditions for Moldability by Using Fuzzy Logic (퍼지논리에 의한 최적 성형조건 결정 시스템에 관한 연구)

  • 강성남;허용정
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2002
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Any factors that increase the resistance of polymer melt to flow or prohibit delivery of sufficient material into the cavity can cause a short shot. Inappropriate injection pressure is one of the most common factors which cause a short shot. Conventionally, domain experts in injection molding decide and modify the pressure based on their experience. It is difficult for a non-expert to decide the pressure properly with the considerations such as a part dimension, shape, and other processing variables. In this study, fuzzy algorithm is proposed to standardize the empirical determination of the pressure so that not only the experts but also non-experts can find the appropriate injection pressure easily. To acquire the more accurate results. domain experts should be interviewed and then technical documents which are collected from the experts should be restored in the fuzzy rule base. But in this study, simulations have been done by using C-MOLD to settle the rule base because it takes much time and also it's difficult to meet and interview the experts.

  • PDF

Learning Rules for AMR of Collision Avoidance using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 자율이동로봇의 충돌 회피학습)

  • 반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.506-512
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modifY rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verifY the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.

  • PDF