• 제목/요약/키워드: Fuzzy Rule-base System

검색결과 154건 처리시간 0.024초

유전자 알고리즘을 이용한 자동 퍼지규칙 추출 방식 (An Auto Fuzzy Rule-base Extraction Method using Genetic Algorithm)

  • 박진성;손동설;임중규;정경권;이현관
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.1003-1006
    • /
    • 2003
  • 본 논문에서는 유전자 알고리즘을 이용한 자동 퍼지규칙 추출 방식을 제안한다. 제안한 방식은 전문가의 조언에 의한 퍼지규칙 기반이나 시행착오법에 의한 퍼지규칙에 의존하지 않고 유전자 알고리즘을 이용한 자동 퍼지규칙 방식이다. 제안한 방식의 유용성을 확인하기 위해 dc모터제어에 적용하였으며 유용성을 확인하였다.

  • PDF

비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석 (Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System)

  • 이철희;김성호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

비선형 시스템을 위한 퍼지 PID 제어기의 설계 및 해석 (Design and Analysis of Fuzzy PID Control for Nonlinear System)

  • 김성호;이철희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.650-652
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance. FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and increase efficiency, a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy Pi and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and them. The resultant rule base is Macvicar-Whelan type. The frequency response information is used in tuning of membership functions. Also a tuning strategy for the scaling factors is Proposed based on the relationship between PID gain and them. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

유전알고리듬을 결합한 퍼지-신경망 제어 시스템 설계 (On Designing A Fuzzy-Neural Network Control System Combined with Genetic Algorithm)

  • 김용호;김성현;전홍태;이홍기
    • 전자공학회논문지B
    • /
    • 제32B권8호
    • /
    • pp.1119-1126
    • /
    • 1995
  • The construction of rule-base for a nonlinear time-varying system, becomes much more complicated because of model uncertainty and parameter variations. Furthemore, FLC does not have an ability of adjusting rule- base in responding to some sudden changes of control environments. To cope with these problems, an auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), which is known to be very effective in the optimization problem, will be proposed. The tuning of the proposed system is performed by two tuning processes(the course tuning process and the fine tuning/adaptive learning process). The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Fuzzy Inference in RDB using Fuzzy Classification and Fuzzy Inference Rules

  • 김진성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.153-156
    • /
    • 2005
  • In this paper, a framework for implementing UFIS (Unified Fuzzy rule-based knowledge Inference System) is presented. First, fuzzy clustering and fuzzy rules deal with the presence of the knowledge in DB (DataBase) and its value is presented with a value between 0 and 1. Second, RDB (Relational DB) and SQL queries provide more flexible functionality fur knowledge management than the conventional non-fuzzy knowledge management systems. Therefore, the obtained fuzzy rules offer the user additional information to be added to the query with the purpose of guiding the search and improving the retrieval in knowledge base and/ or rule base. The framework can be used as DM (Data Mining) and ES (Expert Systems) development and easily integrated with conventional KMS (Knowledge Management Systems) and ES.

  • PDF

An intelligent fuzzy theory for ocean structure system analysis

  • Chen, Tim;Cheng, C.Y.J.;Nisa, Sharaban Tahura;Olivera, Jonathan
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.179-190
    • /
    • 2019
  • This paper deals with the problem of the global stabilization for a class of ocean structure systems. It is well known that, in general, the global asymptotic stability of the ocean structure subsystems does not imply the global asymptotic stability of the composite closed-loop system. The classical fuzzy inference methods cannot work to their full potential in such circumstances because given knowledge does not cover the entire problem domain. However, requirements of fuzzy systems may change over time and therefore, the use of a static rule base may affect the effectiveness of fuzzy rule interpolation due to the absence of the most concurrent (dynamic) rules. Designing a dynamic rule base yet needs additional information. In this paper, we demonstrate this proposed methodology is a flexible and general approach, with no theoretical restriction over the employment of any particular interpolation in performing interpolation nor in the computational mechanisms to implement fitness evaluation and rule promotion.

새로운 계층 구조를 이용한 퍼지 시스템 모델링 (Fuzzy System Modeling Using New Hierarchical Structure)

  • 김도완;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.405-410
    • /
    • 2002
  • 본 논문은 수학적으로 모델링하기 어려운 비선형 시스템을 위한 새로운 계층적 규칙 기반 퍼지 시스템 모델링 기법을 제안한다. 제안된 기법은 퍼지 규칙 기반 구조를 상위 규칙 기반과 하위 규칙 기반으로 나누어 계층화시키는 새로운 모델링 방법이다. 본 논문에서 제안한 계층적 퍼지 규칙을 적용함으로써 퍼지 규칙을 효율적이고 논리적으로 이용할 수 있음은 물론, 퍼지 규칙의 효율적, 논리적 사용은 퍼지 시스템의 정확성을 높일 수 있고 구조를 명료화시킬 수 있음을 보인다. 유전알고리즘은 제안된 퍼지 규칙의 파라미터 최적화 과정에 이용된다. 마지막으로, 복잡한 비선형 시스템에 대한 퍼지 모델링 결과를 통해서 제안된 기법의 타당성 및 효용성을 검증하고 타 기법의 결과와 비교한다.

퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선 (Performance Improvement of Multiple Observer based FDIS using Fuzzy Logic)

  • 류지수;이기상
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.444-451
    • /
    • 1999
  • A diagnostic rule-base design method for enhancing fault detection and isolation performance of multiple obsever based fault detection isolation schemes (FIDS) is presented. The diagnostic rule-base has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises a rule base and a fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic with threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rult-base. The suggested scheme is applied to the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

Prediction of User Preferred Cosmetic Brand Based on Unified Fuzzy Rule Inference

  • 김진성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.271-275
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this Purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between $0\∼1$. Second, RDB and SQL(Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS(Knowledge Management Systems)

  • PDF