• Title/Summary/Keyword: Fuzzy Polynomial Neural Networks

Search Result 118, Processing Time 0.024 seconds

Design of Information Granules based Fuzzy Polynomial Neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software Systems (유전자 알고리즘의 기호 코딩을 이용한 정보 입자기반 터지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2091-2092
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 유전자 알고리즘의 기호코딩을 이용한 정보입자 기반 퍼지 다항식 뉴럴 네트워크 (Information Granules based genetic Fuzzy Polynomial Neural Networks ;IG based gFPNN)의 모델 설계를 제안한다. 기존 퍼지 다항식 뉴럴네트워크의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍 절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델의 전반부 구조와 후반부 구조는 기존 모델에 구성을 그대로 사용한다. 실험적 예제를 통하여 제안된 모델의 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF

Design of GA-based Fuzzy Polynomial Neural Networks Architecture (유전자 기반 퍼지다항식 뉴럴네트워크 구조의 설계)

  • 박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.442-445
    • /
    • 2004
  • 본 논문은 유전자 기반 퍼지다항식 뉴럴네트워크(Genetic based fuzzy polynomial neural networks: gFPNN)를 제안한다. gFPNN 구조는 퍼지집합을 기반으로 설계되며, 유전자 알고리즘에 의해 구조 및 파라미터를 최적화한 구조이다. 퍼지집합을 기반으로 설계되어진 퍼지뉴럴네트워크는 간략추론 구조와 선형추론 구조로 설계된다. 본 논문에서는 간략추론 및 선형추론 구조를 통합 및 확장한 퍼지다항식 뉴럴네트워크를 설계한다. 이 구조는 연결가중치를 이용하여 회귀다항식을 네트워크 구조로 표현하며, 간략추론(Type 0), 선형추론(Type 1), 회귀다항식추론(Type 2)을 모두 포함한다. 또한 퍼지규칙 후반부의 다항식 차수를 각 규칙에 대해 다르게 선택할 수 있으며, 일률적인 형식의 구조를 벗어나 주어진 시스템의 특성에 따라 유연한 구조를 설계할 수 있도록 한다. 여기에 더하여, 네트워크 구조와 파라미터 동조에 유전자 알고리즘을 적용하며, 구조와 파라미터 동정에 대한 효율적인 방법을 논의한다. 제안된 모델의 평가를 위해 수치예제를 이용한다.

  • PDF

Optimization of GA-based Advanced Self-Organizing Fuzzy Polynomial Neural Networks (GA 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크의 최적화)

  • 박호성;박건준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.288-291
    • /
    • 2004
  • 기존의 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. SOFPNN의 구조는 퍼지 다항식 뉴론(FPN)들로 구성되어 있으며, 층이 진행하는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. 그러나, 노드의 입력변수의 수와 규칙 후반부 다항식 차수 그리고 입력변수는 설계자의 경험 또는 반복적인 학습을 통해 선호된 네트워크 구조를 선택하였으나, 최적의 네트워크 구조를 구축하는데는 어려옴이 내재되어 있었다. 본 논문에서는 자기구성 퍼지 다항식 뉴럴네트워크(Self-Organizing Fuzzy Polynomial Neural Networks: SOFPNN)을 최적화시키기 위해 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 따라서 모델 구축에 있어서 유연성과 정확성을 가지며 객관적이고 좀 더 정확한 예측 능력을 가진 SOFPNN 모델 구조를 구축할 수가 있다.

  • PDF

Implementation of Fuzzy Self-Organizing Networks Algorithm and Its Application to Nonlinear Systems (퍼지 자기구성 네트워크 알고리즘의 구현 및 비선형 시스템으로의 응용)

  • Park, Byoung-Jun;Kim, Dong-Won;Lee, Dae-Keun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3001-3003
    • /
    • 2000
  • In this paper. we propose Fuzzy Self-Organizing Networks (FSON) using both Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FSON is generated from the mutually combined structure of both FNN and PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get the better output performance with superb predictive ability. In order to evaluate the performance of proposed models. we use the nonlinear data sets. The results show that the proposed FSON can produce the model with higher accuracy and more robustness than previous any other method.

  • PDF

A Study on Multi-layer Fuzzy Inference System based on a Modified GMDH Algorithm (수정된 GMDH 알고리즘 기반 다층 퍼지 추론 시스템에 관한 연구)

  • Park, Byoung-Jun;Park, Chun-Seong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.675-677
    • /
    • 1998
  • In this paper, we propose the fuzzy inference algorithm with multi-layer structure. MFIS(Multi-layer Fuzzy Inference System) uses PNN(Polynomial Neural networks) structure and the fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Hendling), and uses several types of polynomials such as linear, quadratic and cubic, as well as the biquadratic polynomial used in the GMDH. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here, the regression polynomial inference is based on consequence of fuzzy rules with the polynomial equations such as linear, quadratic and cubic equation. Each node of the MFIS is defined as fuzzy rules and its structure is a kind of neuro-fuzzy structure. We use the training and testing data set to obtain a balance between the approximation and the generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks (정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출)

  • Choi, Jeoung-Nae;Kim, Young-Il;Oh, Sung-Kwun;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space (개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Kim, Byun-Gon;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • In this paper, we introduce the fuzzy neural network based on the individual input space to design the pattern recognizer. The proposed networks configure the network by individually dividing each input space. The premise part of the networks is independently composed of the fuzzy partition of individual input spaces and the consequence part of the networks is represented by polynomial functions. The learning of fuzzy neural networks is realized by adjusting connection weights of the neurons in the consequent part of the fuzzy rules and it follows a back-propagation algorithm. In addition, in order to optimize the parameters of the proposed network, we use real-coded genetic algorithms. Finally, we design the optimized pattern recognizer using the experimental data for pattern recognition.

Stock-Index Prediction using Fuzzy System and Knowledge Information (퍼지시스템과 지식정보를 이용한 주가지수 예측)

  • Kim, Hae-Gyun;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2030-2032
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting. The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. Results show that both networks can be trained to predict the index. And the fuzzy system is performing slightly better than DPNN and MLP.

  • PDF

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture (자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계)

  • Park, Ho-Sung;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF