• Title/Summary/Keyword: Fuzzy Pattern Recognition Algorithm

Search Result 78, Processing Time 0.023 seconds

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

The Classification of Tool Wear States Using Pattern Recognition Technique (패턴인식기법을 이용한 공구마멸상태의 분류)

  • Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image (효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 김광백
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.486-492
    • /
    • 2003
  • The vigilance threshold of conventional fuzzy ART algorithm decide whether to permit the mismatch between any input pattern and stored pattern. If the vigilance threshold was large, despite of little difference among input and stored patterns, the input pattern may be classified to new category. On the other hand, if the vigilance threshold was small, the similarity between two patterns may be accepted in spite of lots of difference and the input pattern are classified to category of the stored pattern. Therefore, the vigilance threshold for the image recognition must be experientially set for the good result. Moreover, it may occur in the fuzzy ART algorithm that the information of stored patterns is lost in the weight-adjusting process and the rate of pattern recognition is dropped. In this paper, I proposed the enhanced fuzzy ART algorithm that supports the dynamical setting of the vigilance threshold using the generalized intersection operator of fuzzy logic and the weight value being adaptively set in proportional to the current weight change and the previous weight by reflecting the frequency of the selection of winner node. For the performance evaluation of the proposed method, we applied to the recognition of container identifiers from shipping container images. The experiment showed that the proposed method produced fewer clusters than conventional ART2 and fuzzy ART algorithm. and had tile higher recognition rate.

A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques (Neuro-Fuzzy 기법을 이용한 부분방전 패턴인식에 대한 연구)

  • Park, Keon-Jun;Kim, Gil-Sung;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2313-2321
    • /
    • 2008
  • In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.

Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition (패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크)

  • Park, Keon-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

The Design of Optimized Type-2 Fuzzy Neural Networks and Its Application (최적 Type-2 퍼지신경회로망 설계와 응용)

  • Kim, Gil-Sung;Ahn, Ihn-Seok;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1615-1623
    • /
    • 2009
  • In order to develop reliable on-site partial discharge (PD) pattern recognition algorithm, we introduce Type-2 Fuzzy Neural Networks (T2FNNs) optimized by means of Particle Swarm Optimization(PSO). T2FNNs exploit Type-2 fuzzy sets which have a characteristic of robustness in the diverse area of intelligence systems. Considering the on-site situation where it is not easy to obtain voltage phases to be used for PRPDA (Phase Resolved Partial Discharge Analysis), the PD data sets measured in the laboratory were artificially changed into data sets with shifted voltage phases and added noise in order to test the proposed algorithm. Also, the results obtained by the proposed algorithm were compared with that of conventional Neural Networks(NNs) as well as the existing Radial Basis Function Neural Networks (RBFNNs). The T2FNNs proposed in this study were appeared to have better performance when compared to conventional NNs and RBFNNs.

Classification of Volatile Chemicals using Fuzzy Clustering Algorithm (퍼지 Clustering 알고리즘을 이용한 휘발성 화학물질의 분류)

  • Byun, Hyung-Gi;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1042-1044
    • /
    • 1996
  • The use of fuzzy theory in task of pattern recognition may be applicable gases and odours classification and recognition. This paper reports results obtained from fuzzy c-means algorithms to patterns generated by odour sensing system using an array of conducting polymer sensors, for volatile chemicals. For the volatile chemicals clustering problem, the three unsupervise fuzzy c-means algorithms were applied. From among the pattern clustering methods, the FCMAW algorithm, which updated the cluster centres more frequently, consistently outperformed. It has been confirmed as an outstanding clustering algorithm throughout experimental trials.

  • PDF

Parallel Fuzzy Inference Method for Large Volumes of Satellite Images

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 2001
  • In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.

  • PDF

Improvement of Three Mixture Fragrance Recognition using Fuzzy Similarity based Self-Organized Network Inspired by Immune Algorithm

  • Widyanto, M.R.;Kusumoputro, B.;Nobuhara, H.;Kawamoto, K.;Yoshida, S.;Hirota, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.419-422
    • /
    • 2003
  • To improve the recognition accuracy of a developed artificial odor discrimination system for three mixture fragrance recognition, Fuzzy Similarity based Self-Organized Network inspired by Immune Algorithm (F-SONIA) is proposed. Minimum, average, and maximum values of fragrance data acquisitions are used to form triangular fuzzy numbers. Then the fuzzy similarity treasure is used to define the relationship between fragrance inputs and connection strengths of hidden units. The fuzzy similarity is defined as the maximum value of the intersection region between triangular fuzzy set of input vectors and the connection strengths of hidden units. In experiments, performances of the proposed method is compared with the conventional Self-Organized Network inspired by Immune Algorithm (SONIA), and the Fuzzy Learning Vector Quantization (FLVQ). Experiments show that F-SONIA improves recognition accuracy of SONIA by 3-9%. Comparing to the previously developed artificial odor discrimination system that used FLVQ as pattern classifier, the recognition accuracy is increased by 14-25%.

  • PDF

Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process- (공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용-)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF