• Title/Summary/Keyword: Fuzzy PID control

Search Result 432, Processing Time 0.028 seconds

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

A Proposal of a Power Saving Hydraulic Unit and Controller Design (동력 절약형 유압유니트 제안 및 제어기 설계)

  • Yum, Man-Oh;Lee, Sang-Yun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.80-88
    • /
    • 2010
  • In a conventional system, hydraulic unit pumps out pressurized oil when the power use is not even necessary. As a result, it causes much power loss. This study is on the proposal of new hydraulic unit which controls the revolution of the pump in order to produce proper power needed and to have good response characteristic. In addition, the existing control methods such as PID control method, fuzzy control method, and adaptive control method are applied to the proposed hydraulic unit. Then the best control method is selected and the controller is developed to realize minimum power loss.

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

Design and Implementaion of Web-based Remote Control Laboratory Using Water-level Control of Coupled Tank Apparatus (이중 탱크의 수위제어 기구를 이용한 Web기반 원격 제어 실험실의 설계 및 구현)

  • Hong, Sang-Eun;Park, Sung-Moo;Kim, Yong-Rae;Sung, Jung-Kun;Oh, Sang-Yeol
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.325-328
    • /
    • 2010
  • 최근의 인터넷환경은 다양한 형태의 가상 및 원격 교육이 가능한 기반을 제공하고 있으며, 대학 및 교육기관에서는 이를 활용한 새로운 교육용 도구의 개발이 활발히 이루어지고 있다. 본 논문은 시공간의 제약 없이 실험을 수행할 수 있도록 하여 학습자들에게 반복 학습이 가능하도록 하였고, 유량제어를 실현 할 수 있는 비선형 시스템의 이중탱크 기구를 이용하여 다양한 제어이론을 실험할 수 있는 웹기반 실험실을 구현하였다. 전체 시스템은 SISO 시스템과 MIMO 시스템을 학습자가 선택하여 실험할 수 있도록 하였다. 유량제어 방식은 수동, PID, FUZZY 제어로 실험할 수 있도록 하여 학습자들에게 여러 가지 제어이론을 다양하게 학습할 수 있도록 구성하였으며, 릴레이 자기 동조법을 구현하여 학습자들로 하여금 PID변수를 확인할수 있도록 하였다. 또한 Web-Cam을 통하여 실험화면을 실시간으로 확인하면서 시뮬레이션을 동시에 실행하여 비교할 수 있도록 구현하였다.

  • PDF

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

Steady State and Dynamic Response of a State Space Observer Based PMSM Drive with Different Controllers

  • Gaur, Prerna;Singh, Bhim;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.280-290
    • /
    • 2008
  • This paper deals with an investigation and evaluation of the performance of a state observer based Permanent Magnet Synchronous Motor (PMSM) drive controlled by PI (Proportional Integral), PID (Proportional Integral and Derivative), SMC (sliding mode control), ANN (Artificial neural network) and FLC (Fuzzy logic) speed controllers. A detailed study of the steady state and dynamic performance of estimated speed and angle is given to demonstrate the capability of the controllers.

Magnetic Levitation Control of the Horizontally-Movable Metal Ball (수평방향 이동이 가능한 금속구의 자기부상 제어)

  • Hamm, Gil;Rhee, Hui-Nam;Lee, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.438-439
    • /
    • 2011
  • Magnetic levitation control system of a metal ball was designed using combined PID and fuzzy logic, in which two electromagnets are used to control the vertical and horizontal position of the ball. Single synchronization coil sensor was used to detect the vertical position. Electric power is differentially supplied to two electromagnets so that the ball can move horizontally. In the experiment 25 cm diameter metal ball was levitated and successfully controlled to move horizontally.

  • PDF

A Study on the Path-Tracking of Electric Wheelchair Robot (전동휠체어 로봇의 경로추적제어에 관한 연구)

  • Ahn, Kyoung-Kwan;Yoon, Jong-Il;Le, Duy Khoa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1265-1271
    • /
    • 2011
  • These days the number of aged and disabled people is increasing rapidly. But most of the disabled or the aged who have the ability to work, want to engage in economic activities and solve social restrictions as well as their bad financial conditions. This paper concerns about the tracking control of an electric wheelchair robot for welfare vehicle where the seat and electric wheelchair are separated and electric wheelchair robot must be autonomously controlled without the help of assistant. So the aged or the disabled people can drive welfare vehicle by himself by adopting this system. Therefore the concept of both an autonomous driving of electric wheelchair and path tracking robots is required in this system. Finally we suggested fuzzy controller in order to control the path tracking of electric wheelchair robot and compared the capability of the proposed controller with conventional PID controller.

Fuzzy Algorithms to Generate Level Controllers for Nuclear Power Plant Steam Generators (원전 증기 발생기 수위제어용 퍼지 알고리즘)

  • Moon, Byung-Soo;Park, Jae-Chang;Kim, Dong-Hwa;Kim, Byung-Koo
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.222-232
    • /
    • 1993
  • In this paper, we present two sets of fuzzy algorithms for the steam generator level control ; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used.

  • PDF

Mobile Haptic Interface for Large Immersive Virtual Environments: PoMHI v0.5 (대형 가상환경을 위한 이동형 햅틱 인터페이스: PoMHI v0.5)

  • Lee, Chae-Hyun;Hong, Min-Sik;Lee, In;Choi, Oh-Kyu;Han, Kyung-Lyong;Kim, Yoo-Yeon;Choi, Seung-Moon;Lee, Jin-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • We present the initial results of on-going research for building a novel Mobile Haptic Interface (MHI) that can provide an unlimited haptic workspace in large immersive virtual environments. When a user explores a large virtual environment, the MHI can sense the position and orientation of the user, place itself to an appropriate configuration, and deliver force feedback, thereby enabling a virtually limitless workspace. Our MHI (PoMHI v0.5) features with omnidirectional mobility, a collision-free motion planning algorithm, and force feedback for general environment models. We also provide experimental results that show the fidelity of our mobile haptic interface.

  • PDF