• Title/Summary/Keyword: Fuzzy Load Torque Observer

Search Result 13, Processing Time 0.034 seconds

A Study on the Load Torque Observer based on Fuzzy Logic Control for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 제어기법 기반의 부하 토크관측기에 관한 연구)

  • Jung, Jin-Woo;Lee, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). A Linear Matrix Inequality(LMI) parameterization of the fuzzy observer gain is given, and the LMI conditions are derived for the existence of the fuzzy load torque observer guaranteeing $\alpha$-stability and linear quadratic performance. In this paper, a nonlinear speed controller is employed to validate the performance of the proposed fuzzy load torque observer, and various simulation results are presented under motor parameter and load torque variations.

A Study on the Design of a Nonlinear Speed Controller and a Fuzzy Load Torque Observer for a PM Synchronous Motor (영구자석 동기전동기의 비선형 속도 제어기 및 퍼지토크관측기 설계에 대한 연구)

  • Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.282-287
    • /
    • 2010
  • This paper proposes a new nonlinear speed controller with a fuzzy load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). The LMI conditions are derived for the existence of the proposed nonlinear speed controller and fuzzy load torque observer, and the LMI parameterization to obtain the gain matrices of the controller and observer is given. In this paper, to verify the performance of the proposed nonlinear speed controller and fuzzy load torque observer, and the simulation and experimental results are demonstrated under motor parameter and load torque variations.

Design of a Fuzzy Speed Controller for a Permanent Magnet Synchronous Motor (영구자석 동기전동기의 퍼지 속도제어기 설계)

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1797-1802
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor(PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the LMI parameterization to calculate the gain matrices of the controller is provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter and load torque variations. Finally, it is clearly verified that the proposed control method can be used to accurately control the speed of a permanent magnet synchronous motor.

Fuzzy Logic Speed Control of a Surface-Mounted Permanent Magnet Synchronous Motor (표면 부착형 영구자석 동기전동기의 퍼지 속도제어)

  • Jung, Jin-Woo;Choi, Young-Sik;Yu, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.184-192
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller to precisely regulate the speed of a surface-mounted permanent magnet synchronous motor(SPMSM). The proposed fuzzy controller needs the knowledge of the load torque to realize its robust and accurate control, thus the first-order load torque observer is adopted to estimate it. It is analytically confirmed that the overall control system containing the fuzzy speed controller and the load torque observer is exponentially stable. To prove the validity of the proposed fuzzy speed controller, the simulation and experimental results are shown. It is concluded that the proposed control scheme can be employed to accurately control the speed of a SPMSM motor.

Design and Stability Analysis of a Fuzzy Observer-based Fuzzy Speed Controller for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 관측기 기반의 퍼지 제어기의 설계 및 안정도 해석)

  • Jung,, Jin-Woo;Choi, Young-Sik;Yu, Dong-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • This paper proposes a new fuzzy load torque observer and a fuzzy speed regulator to guarantee a robust speed control of a permanent magnet synchronous motor (PMSM). Also, the LMI conditions are given for the existence of the fuzzy load torque observer and fuzzy speed controller, and the gains of the observer and controller are calculated. The stability of the proposed control system is analytically proven. To validate the effectiveness of the proposed observer-based fuzzy speed controller, the simulation and experimental results are presented. Finally, it is definitely demonstrated that the proposed control algorithm can be used to accurately control the speed of a PM synchronous motor.

Design of a Fuzzy Speed Controller and a Fuzzy Angular Acceleration Observer for a Permanent Magnet Synchronous Motor (영구자석 동기전동기의 퍼지 속도제어기 및 퍼지 각가속도 관측기 설계)

  • Jung, Jin-Woo;Choi, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • This paper proposes a new fuzzy speed controller for the precise speed control of a permanent magnet synchronous motor(PMSM). The proposed control system needs the information of the angular acceleration instead of the load torque, so the third-order fuzzy acceleration observer estimates it. Moreover, the LMI conditions are derived for the existence of the fuzzy acceleration observer and fuzzy speed controller, and the gain matrices of the observer and controller are obtained. It is analytically proven that the proposed observer-based fuzzy speed regulator is exponentially stable. To evaluate the performance of the proposed control algorithm, experimental results as well as simulation results are provided under the conditions of motor parameter and load torque variations. Finally, it is clearly confirmed that the proposed control method can accurately control the speed of a PMSM.

T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer

  • Jung, Jin-Woo;Choi, Han-Ho;Kim, Tae-Heoung
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.294-304
    • /
    • 2012
  • This paper proposes a fuzzy speed tracking controller and a fuzzy rotor angular acceleration observer for a surface-mounted permanent magnet synchronous motor (SPMSM) based on the Takagi-Sugeno (T-S) fuzzy model. The proposed observer-based controller is robust to load torque variations since it utilizes rotor angular acceleration information instead of the load torque value. Linear matrix inequality (LMI) sufficient conditions are given to compute the gain matrices of the speed tracking controller and the observer. In addition, it is mathematically verified that the proposed observer-based control system is asymptotically stable. Simulation and experimental results are presented to confirm that the proposed control algorithm assures a better transient behavior and less sensitivity under model parameter variations than the conventional PI control method.

Robust Speed Control of a Permanent Magnet Synchronous Motor using a Fuzzy Logic Controller (퍼지제어기를 이용한 영구자석 동기전동기의 강인한 속도제어)

  • Choi, Young-Sik;Yu, Dong-Young;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.343-351
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor (PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the gains of the controller are provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter variations. Finally, it is clearly verified that the proposed control method can accurately control the speed of a permanent magnet synchronous motor.

A study on parameter control of induction motor (유도기 파라미터 제어에 관한 연구)

  • Chae, Young-Moo;Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Chan-Ki;Jeong, Hun-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.219-223
    • /
    • 1995
  • This paper deals with the robust control system for parameter variations, fast responses and load torque variations. Frist, fuzzy-sliding adaptive control be used to. Fuzzy-sliding adaptive control is good at fast response. Second, there are many requests for selecting freely the moment of inertia, even though moment of inertia is determined with the materials, structure, shape, and size of the motors. Therefore we developed an inertia-lowering control system that uses torque observer to reduce the moment of inertia. Finally, using torque observer, torque control is done so as to compensate load torque. Consequently, the proposed system verified the superiority through the simulations using MATLAB.

  • PDF

Robust Control of Induction motor using Fuzzy Sliding Adaptive Controller with Sliding Mode Torque Observer

  • Yoon, Byung-Do;Rhew, Hong-Woo;Lim, Ick-Hun;Kim, Chan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.420-425
    • /
    • 1996
  • In this paper a robust speed controller for an induction motor is proposed. The speed controller consists or a fuzzy sliding adaptive controller(FSAC) and a sliding mode torque observer(SMTO). FSAC removes the problem or oscillations caused by discontinuous inputs of the sliding mode controller. The controller also provides robust characteristics against parameter and sampling time variations. Although, however, the performance of FSAC is better than PI controller and fuzzy controller in robustness, it generates the problem of slow response time. To alleviate this problem, a compensator, which performs feedforward control using torque signals produced by SMTO, is added. The simulation and hardware implementation results show that the proposed system is robust to the load disturbance, parameter variations, and measurement noises.

  • PDF