• 제목/요약/키워드: Fuzzy LDA

검색결과 28건 처리시간 0.021초

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.

A Comparison Study of Classification Algorithms in Data Mining

  • Lee, Seung-Joo;Jun, Sung-Rae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Generally the analytical tools of data mining have two learning types which are supervised and unsupervised learning algorithms. Classification and prediction are main analysis tools for supervised learning. In this paper, we perform a comparison study of classification algorithms in data mining. We make comparative studies between popular classification algorithms which are LDA, QDA, kernel method, K-nearest neighbor, naive Bayesian, SVM, and CART. Also, we use almost all classification data sets of UCI machine learning repository for our experiments. According to our results, we are able to select proper algorithms for given classification data sets.

퍼지 융합을 이용한 다중생체인식 시스템 구현 (Multi-Modal Recognition System Using the Fuzzy Fusion)

  • 양동화;김형민;고현주;전명근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.355-358
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴과 지문을 이용하여 실시간 다중 생체인식 시스템 구현을 제안하였다. 얼굴인식에서는 이미지의 크기를 축소하기 위해 Wavelet Transform을 이용하였으며, 특징 값을 찾아내기 위한 방법으로는 얼굴인식에서 많이 사용되는 LDA(Linear Discriminant Analysis)를 이용하였다. 또한, 지문인식에서는 지문의 중심점을 찾아 가버 변환을 하고, 이로부터 섹터별 변량을 특징 값으로 사용하였으며, 인식 성능을 향상시킬 수 있는 상관도가 높은 지문 3개를 기준 데이터로 등록하였다. 마지막 단계로 두 가지의 생체정보를 모두 사용할 수 있도록 퍼지를 이용하여 얼굴인식의 결과와 지문인식의 결과를 융합하였으며, 단일 생체정보를 이용했을 때의 단점을 다중 생체인식 시스템을 구현함으로서 우수한 성능을 보이는 시스템을 구현하였다.

  • PDF

Fuzzy Elastic Bunch Graph Matching 방법을 이용한 얼굴인식 (Face Recognition using Fuzzy-EBGM(Elastic Bunch Graph Matching) Method)

  • 권만준;고현주;전명근
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.759-764
    • /
    • 2005
  • 본 논문은 EBGM(Elastic Bunch Graph Matching)기법을 이용한 얼굴인식에 대해 다룬다. 대용량 영상 정보에 대해 차원 축소를 이용한 얼굴인식 기법인 주성분기법이나 선형판별기법에서는 얼굴 영상 전체의 정보를 이용하는 반면 본 연구에서는 얼굴의 눈 코 입 등과 같은 얼굴 특징점에 대해 주파수와 방향각이 다른 여러 개의 가버 커널과 영상 이미지의 컨볼루션(Convolution)의 계수의 집합(Jets)을 이용한 특징 데이터를 이용한다. 하나의 얼굴 영상에 대해서 모든 영상이 같은 크기의 특질 데이터로 표현되는 Face Graph가 생성되며, 얼굴인식 과정에서는 추출된 제트의 집합에 대해서 상호 유사도(Similarity)의 크기를 비교하여 얼굴인식을 수행한다. 본 논문에서는 기존의 EBGM 방법의 Face Graph 생성 과정을 보다간략화 한 방법을 이용하여 얼굴인식 과정에서 계산량을 줄여 속도를 개선하였으며, 퍼지 매칭법을 이용한 유사도 계산을 하였다.

전력용 케이블 시편에서 전기트리 발생원에 따른 부분방전 분포 특성 및 발생원 분류기법 비교 (Analysis of PD Distribution Characteristics and Comparison of Classification Methods according to Electrical Tree Source in Power Cable)

  • 박성희;정해은;임기조;강성화
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2007
  • One of the cause of insulation failure in power cable is well known by electrical treeing discharge. This is occurred for imposed continuous stress at cable. And this event is related to safety, reliability and maintenance. In this paper, throughout analysis of partial discharge(PD) distribution when occurring the electrical tree, is studied for the purpose of knowing of electrical treeing discharge characteristics according to defects. Own characteristic of tree will be differently processed in each defect and this reason is the first purpose of this paper. To acquire PD data, three defective tree models were made. And their own data is shown by the phase-resolved partial discharge method (PRPD). As a result of PRPD, tree discharge sources have their own characteristics. And if other defects (void, metal particle) exist internal power cable then their characteristics are shown very different. This result Is related to the time of breakdown and this is importance of cable diagnosis. And classification method of PD sources was studied in this paper. It needs select the most useful method to apply PD data classification one of the proposed method. To meet the requirement, we select methods of different type. That is, neural network(NN-BP), adaptive neuro-fuzzy inference system and PCA-LDA were applied to result. As a result of, ANFIS shows the highest rate which value is 98 %. Generally, PCA-LDA and ANFIS are better than BP. Finally, we performed classification of tree progress using ANFIS and that result is 92 %.

퍼지적분을 이용한 웨이블릿 기반의 3차원 얼굴 인식 (Wavelet based Fuzzy Integral System for 3D Face Recognition)

  • 이영학;심재창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권10호
    • /
    • pp.616-626
    • /
    • 2008
  • 깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있으며, 얼굴 영상으로부터 분리한 주파수 성분은 동일한 얼굴에 대하여 또 다른 중요한 하나의 얼굴 특징으로 볼 수 있다. 본 논문은 3차원 얼굴 영상으로부터 등고선 값에 의해 추출된 영역에 대하여 각 영역별로 주파수 분리를 하여 특징을 추출한 후 이 주파수에 대한 퍼지적분을 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾고, 회전에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형판별분석 알고리즘을 이용하여 유사도를 비교하였다. 클래스간의 분별 정보를 등고선 영역과 각 영역의 주파수 영역에 대해 퍼지적분 방법을 사용하여 인식률을 향상 시켰으며, 깊이 혼합 방식의 경우는 98.6%의 인식률을 나타내었다. 제안된 방법이 다른 알고리즘보다 인식률이 향상되었다.

펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식 (3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm)

  • 이영학
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1501-1514
    • /
    • 2008
  • 깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있다. 다른 형상을 가진 얼굴 영상으로부터 분리한 주파수 성분은 동일 얼굴에 대한 또 다른 중요 특징 성분의 하나가 될 수 있다. 본 논문은 3차원 얼굴 영상에서 등고선 값을 따라 추출된 영역에 대하여 각 영역별로 주파수 분리를 이용하여 특징을 추출한다. 그리고 이 주파수에 대한 수정된 퍼지 군집화를 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾는다. 이를 이용하여 회전된 얼굴에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 이는 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형 판별 분석 알고리즘을 이용하여 유사도를 비교하였다. 본 논문에서는 클래스간의 분별 정보를 향상시키고자 각각의 등고선 영역과 각 영역의 주파수별로 수정된 퍼지 군집화 알고리즘을 적용하여 인식률을 향상 시켰으며, 코끝으로부터 깊이 값이 60인 영역의 경우 98.3%의 인식률을 나타내었다.

  • PDF

얼굴의 등고선 영역을 이용한 퍼지적분 기반의 3차원 얼굴 인식 (3D Face Recognition in the Multiple-Contour Line Area Using Fuzzy Integral)

  • 이영학
    • 한국멀티미디어학회논문지
    • /
    • 제11권4호
    • /
    • pp.423-433
    • /
    • 2008
  • 얼굴 표면에 대한 곡률의 특성은 사람의 특징을 나타내는 중요 요소 중의 하나이며, 깊이 간에 따른 얼굴의 형상 또한 사람마다 다른 모양을 가지고 있으므로 중요한 특징의 하나로 간주 될 수 있다. 본 논문은 3차원 얼굴 영상으로부터 추출된 표면 곡률을 얼굴의 등고선 값에 따라 추출된 영역에 대하여 퍼지적분을 이용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾고, 회전에 대한 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 사람마다 서로 다른 형상 특징을 가지게 된다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 얼굴의 표면 특성 정보인 주 곡률, 평균 곡률 그리고 가우시안 곡률 값을 추출한다. 각각의 등고선 영역에 대해 차원의 감소를 위하여 고유 얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형판별분석 알고리즘을 이용하여 유사도를 비교하였다. 그리고 클래스간의 분별 정보를 등고선 영역들에 대해 퍼지적분 방법을 사용하여 인식률을 향상 시켰다. 제안된 방법으로 수행한 결과, 코끝으로부터 깊이 값 40 (DT 40)인 등고선 영역이 가장 높은 인식률을 나타내었으며, 퍼지적분을 사용한 방법이 다른 알고리즘보다 놀은 인식률을 나타내었으며, 곡률은 주 곡률의 최대 곡률이 98%의 높은 인식률을 나타내었다.

  • PDF