• 제목/요약/키워드: Fuzzy Information System

검색결과 1,660건 처리시간 0.036초

The Application of Fuzzy Reaching Law Control in AC Position Servo System

  • Yang Yangxi;Liu Ding
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.360-364
    • /
    • 2001
  • In this paper, a novel method of reaching law variable structure control based on fuzzy rules is present, which is that the reaching law parameters is on-line adjusted by fuzzy rules. This method is used in a digital ac position servo system, the experiment results show that the system designed by this method has both satisfactory quality and very smaller chattering.

  • PDF

불확실한 $L\ddot{u}$ 카오스 시스템을 위한 적응 퍼지 Bilinear 동기화 제어 설계 (Adaptive Fuzzy Bilinear Synchronization Control Design for Uncertain $L\ddot{u}$ Chaos System)

  • 백재호;이희진;박민용
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.59-66
    • /
    • 2010
  • 본 논문은 불확실한 $L\ddot{u}$ 카오스 시스템의 동기화를 위한 적응 퍼지 bilinear 동기화 제어 설계 방법을 제안한다. $L\ddot{u}$ 카오스 시스템은 알려지지 않은 파라미터를 가지고 있다고 가정한다. 먼저, 불확실한 $L\ddot{u}$ 카오스 시스템을 TS 퍼지 bilinear 모델링을 통해 재구성한다. 불확실한 파라미터를 가진 TS 퍼지 bilinear $L\ddot{u}$ 카오스 시스템을 기반으로한 적응 퍼지 bilinear 동기화 제어 기법을 설계한다. Lyapunov 이론을 통해서 설계된 적응 퍼지 bilinear 동기화 제어 기법을 통한 TS 퍼지 bilinear $L\ddot{u}$ 카오스 시스템과 제안된 슬레이브 시스템 간의 오차 다이나믹 시스템의 안정성을 보장하고 이를 통해서 불확실한 파라미터를 추정 할 수 있는 적응 규칙을 유도한다. 제안된 동기화 제어 기법을 시뮬레이션을 통해서 그 명확성을 보이고자 한다.

System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems

  • Chen, C.Y.J.;Kuo, D.;Hsieh, Chia-Yen;Chen, Tim
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.797-807
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. This paper proposes a novel artificial intelligence based EBA (Evolved Bat Algorithm) controller with machine learning matched membership functions in the complex nonlinear system. The proposed affine transformed membership functions are adopted and stabilization and performance criterion of the closed-loop fuzzy systems are obtained through a new parametrized linear matrix inequality which is rearranged by machine learning affine matched membership functions. The trajectory of the closed-loop dithered system and that of the closed-loop fuzzy relaxed system can be made as close as desired. This enables us to get a rigorous prediction of stability of the closed-loop dithered system by establishing that of the closed-loop fuzzy relaxed system.

세션화 방식을 통한 퍼지기반 네트워크 침입탐지시스템 (A Fuzzy-based Network Intrusion Detection System Through sessionization)

  • 박주기;최은복
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.127-135
    • /
    • 2007
  • 인터넷의 광범위한 보급에 따라 컴퓨터를 이용한 불법적인 범죄가 증가하고 있고, 이러한 범죄를 막기 위한 정보보호 기술자체가 국가의 경쟁력이 되어 가고 있다. 본 논문에서는 퍼지 논리를 네트워크 침입탐지시스템에 적용하여 보안 전문가와 유사한 결과를 얻을 수 있는 자동화된 퍼지 논리기반의 침입탐지시스템을 제안한다. 프로토콜의 유사성과 시간적인 연속성을 통한 세션화된 패킷분류방식을 통한 퍼지 규칙을 본 시스템에 적용함으로서 다양하고 다변적인 공격패턴으로부터 신속한 침입 판정을 내릴 수 있다. 또한, 대용량의 네트워크 트래픽을 처리해야하는 현재의 네트워크 환경에서, 퍼지추론을 통한 자동화된 트래픽의 프로토콜별/세션별 분석결과를 보여 줌으로써 보안전문가들의 분석 시간과 비용을 절감할 수 있는 장점을 제공한다.

  • PDF

Fuzzy Petri-net Approach to Fault Diagnosis in Power Systems Using the Time Sequence Information of Protection System

  • Roh, Myong-Gyun;Hong, Sang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1727-1731
    • /
    • 2003
  • In this paper we proposed backward fuzzy Petri-net to diagnoses faults in power systems by using the time sequence information of protection system. As the complexity of power systems increases, especially in the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires new and systematic methods to the reasoning process, which improves both its accuracy and its efficiency. The fuzzy Petri-net models of protection system are composed of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model, which makes use of the nature of fuzzy Petri-net, is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA (Supervisory Control and Data Acquisition)

  • PDF

T-S 퍼지모델 기반 표적추적 시스템 (The design T-S fuzzy model-based target tracking systems)

  • 노선영;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

퍼지 신경망을 이용한 퍼지 추론 시스템의 학습 및 추론 (Learning and inference of fuzzy inference system with fuzzy neural network)

  • 장대식;최형일
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.118-130
    • /
    • 1996
  • Fuzzy inference is very useful in expressing ambiguous problems quantitatively and solving them. But like the most of the knowledge based inference systems. It has many difficulties in constructing rules and no learning capability is available. In this paper, we proposed a fuzzy inference system based on fuzy associative memory to solve such problems. The inference system proposed in this paper is mainly composed of learning phase and inference phase. In the learning phase, the system initializes it's basic structure by determining fuzzy membership functions, and constructs fuzzy rules in the form of weights using learning function of fuzzy associative memory. In the inference phase, the system conducts actual inference using the constructed fuzzy rules. We applied the fuzzy inference system proposed in this paper to a pattern classification problem and show the results in the experiment.

  • PDF

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

퍼지 서비스 FMEA를 이용한 서비스 시스템 설계 (Service System Design Using Fuzzy Service FMEA)

  • 김준홍;유정상
    • 산업경영시스템학회지
    • /
    • 제31권4호
    • /
    • pp.162-167
    • /
    • 2008
  • FMEA (failure mode and effect analysis)is a widely used technique to assess or to improve reliability of product not only at early stage of design and development, but at the process and service phase during the product life cycle. In designing a service system, this study proposes a fuzzy service FMEA with the service blueprints as a tool which describes customer actions, onstage contact employees actions, backstage contact employees actions, support processes, and physical evidences, in order to analyse and inform service delivery system design. We fuzzified only two risk factors, occurrence and severity, to more effectively assess the potential failure modes in service. Proposed fuzzy risk grades are applied to Gaussian membership function, defuzzified into Fuzzy Inference System, and eventually identified the ranks on the potential fail points.

A Fuzzy-ARTMAP Equalizer for Compensating the Nonlinearity of Satellite Communication Channel

  • Lee, Jung-Sik
    • 한국통신학회논문지
    • /
    • 제26권8B호
    • /
    • pp.1078-1084
    • /
    • 2001
  • In this paper, fuzzy-ARTMAP neural network is applied for compensating the nonlinearity of satellite communication channel. The fuzzy-ARTMAP is made of using fuzzy logic and ART neural network. By a match tracking process with vigilance parameter, fuzzy ARTMAP neural network achieves a minimax learning rule that minimizes predictive error and maximizes generalization. Thus, the system automatically learns a minimal number of recognition categories, or hidden units, to meet accuracy criteria. Simulation studies are performed over satellite nonlinear channels. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP-basis equalizers.

  • PDF