• Title/Summary/Keyword: Fuzzy Functions

Search Result 946, Processing Time 0.029 seconds

Active Noise Control by ANFIS for Unpredictable Secondary Path (불예측적 이차경로에 대한 ANFIS를 이용한 능동소음제어)

  • Kim, Eung-Ju;Choi, Won-Seock;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1964-1966
    • /
    • 2001
  • Active Noise control(ANC) is rapidly becoming the most effective way to reduce noises that can otherwise be very difficult and expensive to control. This research presents ANFIS (Adaptive Network Fuzzy Inference System) controller for adaptively noise cancelling in a duct. ANC system generates secondary control sound pressure with same amplitude and with opposite phase as noise to be eliminated. ANFIS controller is trained to optimize its parameters for adaptively cancelling noise. That is ANFIS train its parameters by gradient descent and LSE method so called hybrid method. This paper present ANFIS in active noise control which provides an improvement convergence speed and limitation of linearity condition. It can model nonlinear functions of arbitrary complexity and ANFIS can construct an input-ouput mapping based on both human knowledge in the form of Takagi and Sugeno's fuzzy if-then rules and stipulated input-output data pairs. This paper also shows that the proposed ANFIS active noise control system successfully cancelled noise.

  • PDF

Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm (경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

Features Extraction for Classifying Parkinson's Disease Based on Gait Analysis (걸음걸이 분석 기반의 파킨슨병 분류를 위한 특징 추출)

  • Lee, Sang-Hong;Lim, Joon-S.;Shin, Dong-Kun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.6
    • /
    • pp.13-20
    • /
    • 2010
  • This paper presents a measure to classify healthy persons and Parkinson disease patients from the foot pressure of healthy persons and that of Parkinson disease patients using gait analysis based characteristics extraction and Neural Network with Weighted Fuzzy Membership Functions (NEWFM). To extract the inputs to be used in NEWFM, in the first step, the foot pressure data provided by the PhysioBank and changes in foot pressure over time were used to extract four characteristics respectively. In the second step, wavelet coefficients were extracted from the eight characteristics extracted from the previous stage using the wavelet transform (WT). In the final step, 40 inputs were extracted from the extracted wavelet coefficients using statistical methods including the frequency distribution of signals and the amount of variability in the frequency distribution. NEWFM showed high accuracy in the case of the characteristics obtained using differences between the left foot pressure and the right food pressure and in the case of the characteristics obtained using differences in changes in foot pressure over time when healthy persons and Parkinson disease patients were classified by extracting eight characteristics from foot pressure data. Based on these results, the fact that differences between the left and right foot pressures of Parkinson disease patients who show a characteristic of dragging their feet in gaits were relatively smaller than those of healthy persons could be identified through this experiment.

Color-based Emotion Analysis Using Fuzzy Logic (퍼지 논리를 이용한 색채 기반 감성 분석)

  • Woo, Young-Woon;Kim, Chang-Kyu;Kim, Chee-Yong
    • Journal of Digital Contents Society
    • /
    • v.9 no.2
    • /
    • pp.245-250
    • /
    • 2008
  • Psychology of color is a research field of psychology for studying human's behavior connected with color. Color carries symbolism and image while sharing psychological consensus with human. Each color has a respective image such as hope, passion, love, life, death, and so on. Peculiar stimuli by colors on these images have great influence on human's emotion and psychology. We therefore proposed a method for understanding human's state of emotion based on colors in this paper. In order to understand human's state of emotion, we analyzed color information used to model a room by a user and then described frequencies of each color as percent using fuzzy inference rules by membership values of fuzzy membership functions for colors used for modeling the room. When we applied the proposed color-based emotion analysis method to emotional state based on colors of Alschuler and Hattwick, we could see the proposed method is efficient.

  • PDF

Case Study of CRM Application Using Improvement Method of Fuzzy Decision Tree Analysis (퍼지의사결정나무 개선방법을 이용한 CRM 적용 사례)

  • Yang, Seung-Jeong;Rhee, Jong-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.13-20
    • /
    • 2007
  • Decision tree is one of the most useful analysis methods for various data mining functions, including prediction, classification, etc, from massive data. Decision tree grows by splitting nodes, during which the purity increases. It is needed to stop splitting nodes when the purity does not increase effectively or new leaves does not contain meaningful number of records. Pruning is done if a branch does not show certain level of performance. By pruning, the structure of decision tree is changed and it is implied that the previous splitting of the parent node was not effective. It is also implied that the splitting of the ancestor nodes were not effective and the choices of attributes and criteria in splitting them were not successful. It should be noticed that new attributes or criteria might be selected to split such nodes for better tries. In this paper, we suggest a procedure to modify decision tree by Fuzzy theory and splitting as an integrated approach.

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

A Basic Study on the Collision Risk Inference Reflecting Maneuverability of a Ship(I) (선박의 조종성능을 반영한 충돌위험도 추론에 관한 기초연구(I))

  • Ahn, Jin-Hyeong;Rhee, Key-Pyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.77-83
    • /
    • 2005
  • In collision avoidance problem of a ship, collision risk model is usually set up using the interview results fron experts who sit on a simulator by varying parameters, in which DCPA and TCPA are commonly used. This method, however, has the weakness in that not only it is expensive but also it shows different results depending on the inerviewees and other navigational parameters. In this study, a fuzzy inference system is designed based on own ship's maneuverability verified fron simulation instead of interviewing navigators. The time and distance corresponding to the collision risk value on which avoidance maneuver should be started are set to the minimum marginal time at which own ship starts maneuvering and the minimum marginal distance suggested by marine traffic rules respectively. This system can be recorfigured as a nonlinearity-strengthened one by increasing the number of fuzzy membership functions.

  • PDF

Efficient Technology Mapping of FPGA Circuits Using Fuzzy Logic Technique (퍼지이론을 이용한 FPGA회로의 효율적인 테크놀로지 매핑)

  • Lee, Jun-Yong;Park, Do-Soon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2528-2535
    • /
    • 2000
  • Technology mapping is a part of VLSI CAD system, where circuits in logical level are mapped into circuits in physical level. The performance of technology mapping system is evaluatecJ by the delay and area of the resulting circuits. In the sequential circuits, the delay of the circuit is decided by the maximal delay between registers. In this work, we introduce an FPGA mapping algorithm improved by retiming technique used in constructive level and iterative level, and by fuzzy logic technique. Initial circuit is mapped into an FPGA circuit by constructive manner and improved by iterative retiming. Criteria given to the initial circuit are structured hierarchically by decision-making functions of fuzzy logic. The proposed system shows better results than previous systems by the experiments with MCNC benchmarkers.

  • PDF

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.