In this study we present the inverse correlation method to select the exploratory variables, while Sugeno used RC method in his paper[6] We assume linear model with measurement error variables as in Fuller's Book[9]. we provide possibilistic linear model and predict the fuzzy response variable in case of fuzzy exploratory variables. By plotting data we can divide them for piecewise plane and provide the piecwise possibilistic linear model. If the exploratory variable is fuzzy trapezoidal variable or interval variable, then we estimate fuzzy trapezoidal variable or interval variable, then we estimate fuzzy trapezoidal response variable respondent to it. We will illustrate using Nonlinear System data in Sugeno's paper
In this study, we develop the Genetic Fuzzy System(GFS) to estimate the link traveling speed. Based on the genetic algorithm, we can get the fuzzy rules and membership functions that reflect more accurate correlation between traffic data and speed. From the fact that there exist missing links that lack traffic data, we added a Case Base Reasoning(CBR) to GFS to support estimating the speed of missing links. The case base stores the fuzzy rules and membership functions as its instances. As cases are accumulated, the case base comes to offer appropriate cases to missing links. Experiments show that the proposed GFS provides the more accurate estimation of link traveling speed than existing methods.
In this paper, a new LMS algorithm with a fuzzy variable step size (FVS LMS) is presented. The change of step size ${\mu}$, at each iteration which is increases or decreases according to the misadaptation degree, is computed by a proportional fuzzy logic controller. As a result the algorithm has very good convergence speed and low steady-state misadjustment. As a measure of the misadaptation degree, the norm of the cross correlation between the estimation error and input signal is used. Simulation results are presented to compare the performance of the FVSS LMS algorithm with the normalized LMS algorithm.
본 연구에서는 다기준 의사결정기법을 적용한 홍수취약성 평가에 내재되는 불확실성을 고려한 평가기법을 제시하였다. 홍수취약성평가과정은 3단계로 구성되며 1단계에서는 홍수와 연관되는 사회적, 경제적, 환경적 영향요인들 중에서 지역의 특성을 반영할 수 있는 평가인자를 선정하고 각 인자의 가중치를 책정한다. 이때 델파이 설문조사기법을 적용하여 의사결정자들의 의견을 수렴한다. 2단계는 평가자료를 수집하고 평가에 사용할 수 있도록 가공하는 단계이며 불확실성 문제를 해소하기 위하여 퍼지수를 적용하였다. 마지막단계에서 홍수취약성을 정량적으로 산정하여 취약지역의 우선순위를 도출한다. 본 연구에서는 퍼지수의 연산과정에서 발생하는 퍼지수의 과장 및 왜곡문제를 해소하기 위한 ${\alpha}$-cut fuzzy TOPSIS 방법을 적용하였다. 또한 수립한 평가기법으로 산정한 결과에 대하여 퍼지자료(fuzzy data)를 적용한 fuzzy TOPSIS, 크리스프(crisp) 자료를 사용한 TOPSIS, WSM등의 다양한 방법으로 평가한 결과들과의 상관관계분석을 수행하였다. 분석결과, ${\alpha}$-cut fuzzy TOPSIS 방법은 대체로 모든 방법과 높은 상관성을 나타내었다. 즉, 크리스프 자료와 퍼지자료를 사용하는 평가방법 사이에서 발생하는 결과의 차이가 ${\alpha}$-cut fuzzy TOPSIS를 이용하면 줄어드는 효과가 있다. 따라서본 연구에서 수립한 홍수취약성 평가방법은 불확실성 문제를 일정 부분 해소한 평가결과를 제시함으로서 치수정책 수립의 유용한 근거자료를 제공할 수 있다.
본 논문에서는 적응 뉴로-퍼지 모델링을 위해 최근에 BBS(blind source separation)분야에서 발전된 독립 성분 분석기법(ICA)을 전처리로 이용하여 효과적인 퍼지 규칙을 생성하는 방법을 제안한다. 기존의 뉴로-퍼지 모델링은 입력 데이터 성분간의 상관관계를 고려하지 않고 입력공간을 분할하기 때문에 효과적으로 분할하지 못하는 단점이 있다. 이로 인해 과도한 규칙 수와 큰 오차를 가지고 있었다. 이에, 본 연구에서는 독립 성분 분석기법을 이용하여 입력 데이터 성분간의 상관관계를 제거함으로서 적은 규칙 수를 갖으면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 시뮬레이션 예로서 Box-Jenkins의 가스로 데이터의 모델링에 적용하여 유용성과 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 알 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3128-3149
/
2018
A number of effective methods for multiple-attribute group decision making (MAGDM) with interval-valued intuitionistic fuzzy numbers (IVIFNs) have been proposed in recent years. However, the different methods frequently yield different, even sometimes contradictory, results for the same problem. In this paper a novel criterion to determine the advantages and disadvantages of different methods is proposed. First, the decision-making process is divided into three parts: translation of experts' preferences, aggregation of experts' opinions, and comparison of the alternatives. Experts' preferences aggregation is considered the core step, and the quality of the collective matrix is considered the most important evaluation index for the aggregation methods. Then, methods to calculate the similarity measure, correlation, correlation coefficient, and energy of the intuitionistic fuzzy matrices are proposed, which are employed to evaluate the collective matrix. Thus, the optimal method can be selected by comparing the collective matrices when all the methods yield different results. Finally, a novel approach for aggregating experts' preferences with IVIFN is presented. In this approach, experts' preferences are mapped as points into two-dimensional planes, with the plant growth simulation algorithm (PGSA) being employed to calculate the optimal rally points, which are inversely mapped to IVIFNs to establish the collective matrix. In the study, four different methods are used to address one example problem to illustrate the feasibility and effectiveness of the proposed approach.
본 논문은 주성분분석기법, 퍼지 클러스터링, ANFIS(Adaptive Neuro-Fuzzy Inference System)와 하이브리드 GA(Hybrid Genetic Algorithm)를 이용하여 GA 기반 TSK(Takagi-Sugeno-Kang) 퍼지 분류기를 제안한다. 먼저 구조동정은 주성분분석기법을 이용하여 데이터 성분간의 상관관계가 제거하도록 입력데이터를 변환하고, FCM(Fuzzy c-means) 클러스터링과 ANFIS의 융합을 통해 초기 TSK 퍼지 분류기를 구축한다. 구축된 초기 분류기의 파라미터를 초기집단으로 발생시켜 AGA(Adaptive GA)와 RLSE(Recursive Least Square Estimate)에 의해 파라미터 동정을 수행한다. 이렇게 함으로서 퍼지 클러스터링의 효율적인 입력공간분할로 ANFIS의 문제점을 해결할 수 있고, AGA에 의해 집단의 다양성 유지와 전역적인 최적해의 수렴을 가속화할 수 있다. 마지막으로, 제안된 방법은 Iris 데이터 분류문제에 적용하여 이전의 다른 논문에 비해 좋은 성능을 보임을 알 수 있었다.
An intelligent multimode target tracking algorithm using fuzzy logic is presented. Multimode tracking represents a synergistic approach that utilizes a variety of tracking techniques(centroid, correlation, etc.) to overcome the limitations inherent in any single-mode tracker. The design challenge for this type of multimode tracker is the data fusion algorithm. designs for this algorithm are based on heuristic rather than analytical approaches. A correlation-tracking algorithm seeks to align the incoming target image with a reference in age of the target, but has a critical problem, so called drift phenomenon. In this paper we will suggest a robust correlation tracker with gradient preprocessor combined by centroid algorithm to overcome the drift problem.
To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.
침입탐지시스템은 사용된 알고리즘이나 기법의 특성에 따라 여러 탐지영역에 대해서 상이한 탐지결과를 나타내게된다. 따라서 서로 다른 탐지영역을 갖는 여러 탐지시스템들의 결과를 통합함으로써 탐지영역을 넓힐 수 있는 통합탐지 방법이 필요하다. 또한 통합 시에 발생할 수 있는 수많은 잘못된 보고의 수를 최소화함으로써 보안 관리자의 업무부담을 줄이고 탐지결과의 정확성을 높일 필요가 있다. 이 논문에서는 시스템 사용행위에 대해서 각 탐지시스템들이 모호한 판정의 결과값을 내어놓는 경우 분석된 탐지시스템의 특성을 퍼지추론을 이용하여 통합탐지 한다. 분석된 탐지 특성은 퍼지제어의 과정에서 적용된 각 탐지시스템에 대한 소속함수와 제어규칙으로 표현한다. 그리고, 모호한 판정 값을 통합하고 잘못된 보고의 숫자를 최소화하였으며, 여러 번의 실험을 통해 결정된 임계값의 적용으로 추론의 적용대상이 최소화되도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.