• Title/Summary/Keyword: Fuzzy Convergence

Search Result 501, Processing Time 0.025 seconds

Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function (사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석)

  • Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2014
  • Fuzzy modeling is generally using the given data and the fuzzy rules are established by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is presented by selection of the input variables, the number of space division and membership functions and in this paper the consequent part of the fuzzy rule is identified by polynomial functions in the form of linear inference and modified quadratic. Parameter identification in the premise part devides input space Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. In this paper, membership function of the premise part is dividing input space by using trapezoid-type membership function and by using gas furnace process which is widely used in nonlinear process we evaluate the performance.

Application of Fuzzy Logic in Scenario Based Language, Learning (시나리오 기반 언어 학습에서 퍼지논리 적용에 관한 연구)

  • Lee, Sang-Hyun;Moon, Kyung-Il;Lee, Sang-Joon
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.221-228
    • /
    • 2013
  • A number of research studies focus on the efficacy of using such as scenario based learning. However, desirable methods have not been introduced to assess the scenario based learning. This article is to suggest a fuzzy logic based framework for scenario base learning in which more reasonable learning effects are measured. It can be solved uncertain problems of linguistic variables. Also, we suggest three measures of accuracy, comprehensibility and completeness in order to evaluate accurate effects of scenario based learning. This assessment provides the scenario to the learner in which the scenario is presented in an authentic context, and enable the learner to reach an outcome through an adequate sequence and choices. This approach enables the system to present new scenarios and outcomes based on what a user selects. In particular, the application of fuzzy logic in scenario based learning can be easily pursued certain successful path or wrong path all the way through to reach major outcome in real situation.

A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming (유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구)

  • 이상부;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the intialized value is excellent. In case an unknown process or the mathematical modeling of a complicated system is impossible, a fit control quantity can be acquired by the Fuzzy inference. But FLC can not converge correctly to the desirable value because the FLC's output value by the size of the quantization level of the Fuzzy variable always has a minor error. There are many ways to eliminate the minor error, but I will suggest GA-FLC and EP-FLC Hybrid controller which csombines FLC with GA(Genetic Algorithm) and EP(Evo1ution Programming). In this paper, the output characteristics of this Hybrid controller will be compared and analyzed with those of FLC, it will he showed that this Hybrid controller converge correctly to the desirable value without any error, and !he convergence speed performance of these two kinds of Hyhrid controller also will be compared.

  • PDF

A Study on the Operation and Function Improvement for apparel warehouse Using Fuzzy-AHP (Fuzzy-AHP를 활용한 의류 물류창고 운영개선에 관한 연구)

  • Kwon, Sung-Joon;Cha, Young-Doo;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.15 no.9
    • /
    • pp.23-33
    • /
    • 2017
  • Given the expansion of globalization and international trade, the number of apparel consumers is growing every year, making it difficult to estimate the amount of handling needed from the logistics industry. To determine which management factors are important and which ones require improvement, fuzzy AHP was used. Using this method, the factors were ranked in the final analysis as follows: The first and most important factor was training employees (0.17), while the second was fire hazard management (0.169); the third-highest factor was inbound and outbound goods (0.142), and the fourth was the warehouse management system. Barcode management was ranked fifth. By these results, we were able to analyze the processes of clothing warehouses, noting that although the factors appear independent, they are actually connected while proceeding with full management control. Moreover, because of the special characteristics of garments, employee management is crucial. Due to the vulnerability of these goods to fire hazards, this factor must be well managed.

Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic (유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현)

  • Lee Sang-Boo;Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • The FLC(Fuzzy Logic Controller) is stronger to the disturbance and has the excellent characteristic to the overshoot of the initialized value than the classical controller, and also can carry out the proper control being out of all relation to the mathematical model and parameter value of the system. But it has the restriction which can't adopt the environment changes of the control system because of generating the fuzzy control rule through an expert's experience and the fixed value of the once determined control rule, and also can't converge correctly to the desired value because of haying the minute error of the controller output value. Now there are many suggested methods to eliminate the minute error, we also suggest the GA-FNNIC(Genetic Algorithm Fuzzy Neural Network Intelligence Controller) combined FLC with NN(Neural Network) and GA(Genetic Algorithm). In this paper, we compare the suggested GA-FNNIC with FLC and analyze the output characteristics, convergence speed, overshoot and rising time. Finally we show that the GA-FNNIC converge correctly to the desirable value without any error.

  • PDF

An adaptive Fuzzy Binarization (적응 퍼지 이진화)

  • Jeon, Wang-Su;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.485-492
    • /
    • 2016
  • A role of the binarization is very important in separating the foreground and the background in the field of the computer vision. In this study, an adaptive fuzzy binarization is proposed. An ${\alpha}$-cut control ratio is obtained by the distribution of grey level of pixels in a sliding window, and binarization is performed using the value. To obtain the ${\alpha}$-cut, existing thresholding methods which execution speed is fast are used. The threshold values are set as the center of each membership function and the fuzzy intervals of the functions are specified with the distribution of grey level of the pixel. Then ${\alpha}$-control ratio is calculated using the specified function and binarization is performed according to the membership degree of the pixels. The experimental results show the proposed method can segment the foreground and the background well than existing binarization methods and decrease loss of the foreground.

A Movie Recommendation System based on Fuzzy-AHP and Word2vec (Fuzzy-AHP와 Word2Vec 학습 기법을 이용한 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.18 no.1
    • /
    • pp.301-307
    • /
    • 2020
  • In recent years, a recommendation system is introduced in many different fields with the beginning of the 5G era and making a considerably prominent appearance mainly in books, movies, and music. In such a recommendation system, however, the preference degrees of users are subjective and uncertain, which means that it is difficult to provide accurate recommendation service. There should be huge amounts of learning data and more accurate estimation technologies in order to improve the performance of a recommendation system. Trying to solve this problem, this study proposed a movie recommendation system based on Fuzzy-AHP and Word2vec. The proposed system used Fuzzy-AHP to make objective predictions about user preference and Word2vec to classify scraped data. The performance of the system was assessed by measuring the accuracy of Word2vec outcomes based on grid search and comparing movie ratings predicted by the system with those by the audience. The results show that the optimal accuracy of cross validation was 91.4%, which means excellent performance. The differences in move ratings between the system and the audience were compared with the Fuzzy-AHP system, and it was superior at approximately 10%.

Fuzzy sliding mode controller design for improving the learning rate (퍼지 슬라이딩 모드의 속도 향상을 위한 제어기 설계)

  • Hwang, Eun-Ju;Cho, Young-Wan;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.747-752
    • /
    • 2006
  • In this paper, the adaptive fuzzy sliding mode controller with two systems is designed. The existing sliding mode controller used to $approximation{\^{u}}(t)$ with discrete sgn function and sat function for keeping the state trajectories on the sliding surface[1]. The proposed controller decrease the disturbance for uncertain control gain and This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems ate used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties ate demonstrated. Futhermore, fuzzy tuning improve tracking abilities by changing some sliding conditions. In the traditional sliding mode control, ${\eta}$ is a positive constant. The increase of ${\eta}$ has led to a significant decrease in the rise time. However, this has resulted in higher overshoot. Therefore the proposed ${\eta}$ tuning AFSMC improve the performances, so that the controller can track the trajectories faster and more exactly than ordinary controller. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Fault Diagnosis of Induction Motor using Linear Predictive Coding and Deep Neural Network (LPC와 DNN을 결합한 유도전동기 고장진단)

  • Ryu, Jin Won;Park, Min Su;Kim, Nam Kyu;Chong, Ui Pil;Lee, Jung Chul
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1811-1819
    • /
    • 2017
  • As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.