• Title/Summary/Keyword: Fuzzy C-Mean clustering

검색결과 60건 처리시간 0.03초

다항식 방사형기저함수 신경회로망을 이용한 ASP 모델링 및 시뮬레이터 설계 (Design of Modeling & Simulator for ASP Realized with the Aid of Polynomiai Radial Basis Function Neural Networks)

  • 김현기;이승주;오성권
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.554-561
    • /
    • 2013
  • In this paper, we introduce a modeling and a process simulator developed with the aid of pRBFNNs for activated sludge process in the sewage treatment system. Activated sludge process(ASP) of sewage treatment system facilities is a process that handles biological treatment reaction and is a very complex system with non-linear characteristics. In this paper, we carry out modeling by using essential ASP factors such as water effluent quality, the manipulated value of various pumps, and water inflow quality, and so on. Intelligent algorithms used for constructing process simulator are developed by considering multi-output polynomial radial basis function Neural Networks(pRBFNNs) as well as Fuzzy C-Means clustering and Particle Swarm Optimization. Here, the apexes of the antecedent gaussian functions of fuzzy rules are decided by C-means clustering algorithm and the apexes of the consequent part of fuzzy rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The coefficients of the consequent polynomial of fuzzy rules and performance index are considered by the Least Square Estimation and Mean Squared Error. The descriptions of developed process simulator architecture and ensuing operation method are handled.

커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화 (Initialization of Fuzzy C-Means Using Kernel Density Estimation)

  • 허경용;김광백
    • 한국정보통신학회논문지
    • /
    • 제15권8호
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM)는 군집화를 위해 널리 사용되는 알고리듬 중 하나로 다양한 응용 분야에서 성공적으로 사용되어 왔다. 하지만 FCM은 여러 가지 단점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 군집화의 결과가 달라진다. 따라서 초기 원형의 설정은 군집화 결과 향상을 위해 중요하다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 해결하는 방안으로 커널 밀도 추정을 활용하는 방법을 제안한다. 커널 밀도 추정은 비모수적 분포들에도 사용할 수 있어 국부적인 데이터 밀도 추정에 유용하다. 제안한 방법에서는 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 선택할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험 결과를 통해 확인할 수 있다.

PFCM 클러스터링 기법의 개선 (Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method)

  • 허경용;최세운;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.177-185
    • /
    • 2009
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means(PFCM) 방법에 Gath-Geva(CG)의 방법을 적용하여 PFCM을 개선한다. 제안한 방법은 PFCM 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이나는 경우에도 정확한 결과를 얻을 수 있다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계 (Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases)

  • 최우용;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.586-591
    • /
    • 2014
  • 본 연구에서는 인공 벌 군집(ABC: Artificial Bee Colony) 알고리즘을 이용하여 주어진 레이더 데이터로부터 강수 사례와 비강수 사례를 분류하는 방사형 기저함수 신경회로망(RBFNNs: Radial Basis Function Neural Networks)분류기를 소개한다. 기상청에서 사용하고 있는 기상 레이더 데이터의 특성 분석을 통해 입력 데이터를 구성한다. 방사형 기저함수 신경회로망의 조건부에서는 Fuzzy C-Means 클러스터링 방법을 이용하여 적합도를 계산하고, 결론부에서는 최소자승법(LSE: Least Square Method)을 이용하여 다항식 계수를 추정한다. 추론부에서 최종출력 값은 퍼지 추론 방법을 이용하여 얻어진다. 제안된 분류기의 성능은 기상청에서 사용하는 QC와 CZ 데이터를 고려하여 비교 및 분석되어진다.

하이브리드 분류기법을 이용한 위성영상의 분류에 관한 연구 (A Study on the Classification for Satellite Images using Hybrid Method)

  • 전영준;김진일
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.159-168
    • /
    • 2004
  • 본 논문에서는 위성영상의 분류에 대한 성능 개선을 위하여 ISODATA 클러스터링, 퍼지 C-Means 알고리즘, 베이시안 최대우도 분류기법을 통합한 하이브리드 분류기법을 제안하였다. 본 연구에서는 분석자에 의하여 분류항목별 학습 데이터를 선정한 후 이를 ISODATA 클러스터링을 이용하여 각각의 분류항목별로 분광특징에 따라 학습 데이터를 세분화하여 새로운 학습 데이터를 선정하였다. 새롭게 선정된 학습 데이터를 이용하여 퍼지 C-Means 알고리즘을 이용하여 분류를 수행하고 그 결과를 베이시안 최대우도 분류기의 사전확률로 적용하여 분류를 수행하였다. 그 결과 분석자가 선정한 분류항목별 훈련데이터의 분광적인 특징에 관계없이 분류를 수행할 수 있었으며 위성영상의 분류의 성능을 개선할 수 있었다. 제안된 기법은 Landsat TM 위성영상을 이용하여 그 적용성을 시험하였다.

엔트로피 기반의 가중치와 분포크기를 이용한 향상된 FCM 알고리즘 (Improved FCM Algorithm using Entropy-based Weight and Intercluster)

  • 곽현욱;오준택;손영호;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.1-8
    • /
    • 2006
  • 본 논문은 엔트로피 기반의 가중치와 클러스터 분포크기를 이용한 향상된 FCM(Fuzzy C-Mean)알고리즘을 제안한다. FCM 알고리즘은 영상분할에서 일반적으로 많이 사용되는 퍼지 클러스터링 방법이다. 그러나 공간정보를 포함하지 않기 때문에 잡음 등에 민감하고, 클러스터를 이루는 특정들의 분포에 따라 화소들을 정확하게 분류할 수 없다. 이러한 단점을 해결하기 위해서 FCM 알고리즘의 소속정도를 연산할 때 클러스터 분포크기와 이웃 화소의 공간정보를 이용한 엔트로피 기반의 가중치를 적용한다. 실험결과에서 제안한 방법이 기존의 방법들보다 잡음에 강건하며 분할결과를 보였다.

클러스터 밀도에 무관한 향상된 클러스터링 기법 (An Improved Clustering Method with Cluster Density Independence)

  • 유병현;김완우;허경용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.248-249
    • /
    • 2015
  • 클러스터링은 대표적인 비교사 학습 방법의 하나로 균일한 특성을 가지는 데이터를 클러스터로 묶기 위해 사용된다. 하지만 클러스터링은 기본적으로 클러스터의 중심에서 데이터까지의 거리에 기반하고 있으므로 클러스터의 중심이 밀도가 높은 클러스터 쪽으로 쏠리는 현상이 발생한다. 이 논문에서는 클러스터의 중심을 가능한 멀리 떨어져 있도록 하는 항을 Fuzzy C-Means의 목적함수에 추가함으로써 클러스터 사이의 밀도 차이가 심한 데이터의 클러스터링 문제에서 정확한 결과를 얻을 수 있는 클러스터링 방법을 제안한다. 제안한 방법은 FCM에 비해 실제 클러스터 중심으로 수렴하는 경우가 더 많으며 수렴 속도 역시 FCM 보다 빠른 것을 실험 결과를 통해 확인할 수 있다.

  • PDF

순차적 클러스터링기법을 이용한 송전 계통의 지역별 그룹핑 (Regional Grouping of Transmission System Using the Sequential Clustering Technique)

  • 김현홍;이우남;박종배;신중린;김진호
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.911-917
    • /
    • 2009
  • This paper introduces a sequential clustering technique as a tool for an effective grouping of transmission systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the similarity measures of regional information with the similarity measures of location price, and introduce the techniques of the clustering method. This transmission usage rate uses power flow based on congestion costs and similarity measurements using the FCM(Fuzzy C-Mean) algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS and Korea power system.

FCM을 이용한 역광 이미지의 효율적인 컬러 색상 보정 (Efficiently Color Compensation in Back-Light Image using Fuzzy c-means Clustering Algorithm)

  • 김영탁;유재형;한헌수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.37-38
    • /
    • 2011
  • 본 논문은 상대적으로 대비도 차이가 크게 나타나는 역광 이미지에 대해서 Retinex 알고리즘을 적용하여 보정 했을 경우 발생하는 밝은 영역에서의 컬러 성분의 손실을 개선하기 위한 새로운 기법을 제안한다. 역광 이미지의 경우 밝은 영역과 어두운 영역에 대한 밝기 차이가 매우 크게 발생하기 때문에 Retinex 알고리즘을 이용하여 영상의 대비도를 향상시킬 경우 밝은 영역에서의 컬러 성분이 손실되는 현상이 발생한다. 이러한 손실을 보완하기 위해서 원본 영상의 밝은 영역에 해당하는 컬러 성분을 Retinex 알고리즘으로 보정된 영상에 추가해준다. Fuzzy c-means 군집화 알고리즘을 이용하여 원본 영상에서의 밝은 영역과 어두운 영역에 대하여 모든 화소의 소속 정도를 나타내는 퍼지 소속 함수를 구한다. 밝은 영역에 대해서의 컬러 성분은 원본 영상 값에 밝은 영역 퍼지 소속 함수를 적용하고, 어두운 영역에 대해서의 컬러 성분은 Retinex 복원 영상 값에 어두운 영역 퍼지 소속 함수를 이용한다. 제안하는 알고리즘의 성능 평가를 위해 역광 현상이 강하게 나타나는 자연영상들을 대상으로 적용하여 기존의 Retinex 알고리즘(MSRCR) 보다 우수한 성능을 가지고 있음을 보였다.

  • PDF

마커 클러스터링을 이용한 유역변환 기반의 질감 분할 기법 (A Watershed-based Texture Segmentation Method Using Marker Clustering)

  • 황진호;김원희;문광석;김종남
    • 한국멀티미디어학회논문지
    • /
    • 제10권4호
    • /
    • pp.441-449
    • /
    • 2007
  • 영상 분할을 위한 클러스터링에서는 방대한 계산량과 전형적인 분할 오류가 중요한 문제점으로 지적되어 왔다. 본 연구에서는 이러한 문제들을 최소화하기 위한 새로운 기법을 제안한다. 마커-제어 유역변환(marker- controlled watershed transform)에서 마커는 영역 확장의 시작점이므로, 분할된 각 영역을 대표하는 성질을 가진다. 따라서 마커 화소로 제한하는 클러스터링으로 계산 복잡도를 줄일 수 있다. 제안한 기법에서는 가보 필터(gabor filter)의 질감 에너지에서 마커를 선택하고, FCM(fuzzy c-means) 클러스터링으로 마커의 군집을 형성하며, 유역변환에서 생성된 영역들을 마커의 군집정보를 이용하여 병합한다. Brodatz 영상 조합에 대한 성능 실험에서 클러스터링 특유의 얼룩(blob) 분할 오류를 현저하게 개선하였으며, 영상 분할 소요 시간 비교에서 기존의 FCM 클러스터링 알고리즘보다 소요 시간이 적었다. 또한, 전체적으로 일정한 분할 소요시간을 보여주었다.

  • PDF