• Title/Summary/Keyword: Fuzzy Classifier

Search Result 197, Processing Time 0.027 seconds

Design of Meteorological Radar Echo Classifier Based on RBFNN Using Radial Velocity (시선속도를 고려한 RBFNN 기반 기상레이더 에코 분류기의 설계)

  • Bae, Jong-Soo;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • In this study, we propose the design of Radial Basis Function Neural Network(RBFNN) classifier in order to classify between precipitation and non-precipitation echo. The characteristics of meteorological radar data is analyzed for classifying precipitation and non-precipitation echo. Input variables is selected as DZ, SDZ, VGZ, SPN, DZ_FR, VR by performing pre-processing of UF data based on the characteristics analysis and these are composed of training and test data. Finally, QC data being used in Korea Meteorological Administration is applied to compare with the performance results of proposed classifier.

A New Approach For Off-Line Signature Verification Using Fuzzy ARTMAP

  • Hsn, Doowhan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.33-40
    • /
    • 1995
  • This paper delas with the detection of freehand forgeries of signatures based on the averaged directional amplitudes of gradient vetor which are related to the overall shape of the handwritten signature and fuzzy ARTMAP neural network classifier. In the first step, signature images are extracted from the background by a process involving noise reduction and automatic thresholding. Next, twelve directional amplitudes of gradient vector for each pixel on the signature line are measure and averaged through the entire signature image. With these twelve averaged directional gradient amplitudes, the fuzzy ARTMAP neural network is trained and tested for the detection of freehand forgeries of singatures. The experimental results show that the fuzzy ARTMAP neural network cna lcassify a signature whether genuine or forged with greater than 95% overall accuracy.

  • PDF

Intelligent Approach for Android Malware Detection

  • Abdulla, Shubair;Altaher, Altyeb
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2964-2983
    • /
    • 2015
  • As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.

On a Novel Way of Processing Data that Uses Fuzzy Sets for Later Use in Rule-Based Regression and Pattern Classification

  • Mendel, Jerry M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents a novel method for simultaneously and automatically choosing the nonlinear structures of regressors or discriminant functions, as well as the number of terms to include in a rule-based regression model or pattern classifier. Variables are first partitioned into subsets each of which has a linguistic term (called a causal condition) associated with it; fuzzy sets are used to model the terms. Candidate interconnections (causal combinations) of either a term or its complement are formed, where the connecting word is AND which is modeled using the minimum operation. The data establishes which of the candidate causal combinations survive. A novel theoretical result leads to an exponential speedup in establishing this.

Fuzzy Training Based on Segmentation Using Spatial Region Growing

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.353-359
    • /
    • 2004
  • This study proposes an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. In the proposed method, the image is segmented using a spatial region growing based on hierarchical clustering, and fuzzy training is then employed to find the sample classes that well represent the ground truth. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes. The experimental results show that the new scheme proposed in this study could be used to select the regions with different characteristics existed on the scene of observed image as an alternative of field survey that is so expensive.

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF

Improvement of Three Mixture Fragrance Recognition using Fuzzy Similarity based Self-Organized Network Inspired by Immune Algorithm

  • Widyanto, M.R.;Kusumoputro, B.;Nobuhara, H.;Kawamoto, K.;Yoshida, S.;Hirota, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.419-422
    • /
    • 2003
  • To improve the recognition accuracy of a developed artificial odor discrimination system for three mixture fragrance recognition, Fuzzy Similarity based Self-Organized Network inspired by Immune Algorithm (F-SONIA) is proposed. Minimum, average, and maximum values of fragrance data acquisitions are used to form triangular fuzzy numbers. Then the fuzzy similarity treasure is used to define the relationship between fragrance inputs and connection strengths of hidden units. The fuzzy similarity is defined as the maximum value of the intersection region between triangular fuzzy set of input vectors and the connection strengths of hidden units. In experiments, performances of the proposed method is compared with the conventional Self-Organized Network inspired by Immune Algorithm (SONIA), and the Fuzzy Learning Vector Quantization (FLVQ). Experiments show that F-SONIA improves recognition accuracy of SONIA by 3-9%. Comparing to the previously developed artificial odor discrimination system that used FLVQ as pattern classifier, the recognition accuracy is increased by 14-25%.

  • PDF

Rule Weight-Based Fuzzy Classification Model for Analyzing Admission-Discharge of Dyspnea Patients (호흡곤란환자의 입-퇴원 분석을 위한 규칙가중치 기반 퍼지 분류모델)

  • Son, Chang-Sik;Shin, A-Mi;Lee, Young-Dong;Park, Hyoung-Seob;Park, Hee-Joon;Kim, Yoon-Nyun
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • A rule weight -based fuzzy classification model is proposed to analyze the patterns of admission-discharge of patients as a previous research for differential diagnosis of dyspnea. The proposed model is automatically generated from a labeled data set, supervised learning strategy, using three procedure methodology: i) select fuzzy partition regions from spatial distribution of data; ii) generate fuzzy membership functions from the selected partition regions; and iii) extract a set of candidate rules and resolve a conflict problem among the candidate rules. The effectiveness of the proposed fuzzy classification model was demonstrated by comparing the experimental results for the dyspnea patients' data set with 11 features selected from 55 features by clinicians with those obtained using the conventional classification methods, such as standard fuzzy classifier without rule weights, C4.5, QDA, kNN, and SVMs.

A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques (Neuro-Fuzzy 기법을 이용한 부분방전 패턴인식에 대한 연구)

  • Park, Keon-Jun;Kim, Gil-Sung;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2313-2321
    • /
    • 2008
  • In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.