• Title/Summary/Keyword: Fuzzy 제어

Search Result 3,393, Processing Time 0.03 seconds

Constant Estimated Terminal Pressure Control Using PID and Fuzzy Control in the Booster Pump System (Booster Pump System에서의 PID 및 Fuzzy 제어를 이용한 일정 예측 최종 압력 제어)

  • 이병훈;이재춘;전덕구;이상균;황민규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.119-122
    • /
    • 1996
  • 본 논문은 Building, 아파트, 병원 호텔 등의 건물의 급수 System으로서 최근 대두되고 있는 Bosster Pump System에 관한 것으로서, 제품의 주요 특징 및 제어 알고리즘을 소개하고 특히 최종 User에게 쾌적한 급수 환경을 제공하기 위한 주 제어 기능인 일정 예측 최종 압력 제어를 PID 및 Fuzzy 제어이론을 이용하여 구현하였는데, 그 적용 알고리즘을 소개하고, 실제 제어 실험을 통해 PID제어와 Fuzzy 제어를 비교하였다.

  • PDF

A Study on the Use of Genetic Algorithm for Compensate a Intelligent Controller (지능제어기 보상을 위한 유전 알고리즘 이용에 관한 연구)

  • Shin, Wee-Jae;Moon, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • The fuzzy control, neural network and genetic algorithm(GA) are algorithms to make the intelligence of system more higher. In this paper, we optimized the fuzzy controller using a genetic algorithm for desire response. Also a compensated fuzzy controller has dual rules. One control rule used to decrease the overshoot and rise time occurring in transient response region and another fuzzy control rule use to decrease the steady state error and rapildy to converge at the convergence region. GA is necessary to optimal the exchange time of the two fuzzy control rule base. Fuzzy-GA controller have a process of reproduction, crossover and mutation and we experimented by hydraulic servo motor control system We could observe that compensated Fuzzy-GA controller have good control performance compare to the fuzzy control technique have two rule base table.

  • PDF

A design of Fuzzy PI+Fuzzy D Controller for Control of 3 Phase Induction Motor (3상 유도모터의 제어를 위한 퍼지 PI+퍼지 D 제어기의 구현)

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1176-1181
    • /
    • 2007
  • In this paper, we consider one of robust control system, fuzzy PI+fuzzy D controller dealing with noise, load, changed parameters of plant. We apply PI+D controller with a design for output of differential function and, we plan fuzzy controller with input for PID parameter of PI+D controller so We design control system meet with the change of environment with robust in relation to change of parameter. Fuzzy control is possessed of easy 4 rules and membership function and We design fuzzy PI+fuzzy D controller. Plant of this paper make a choice of 3 phase induction motor.

Analysis on Dynamical Behavior of the Crisp Type Fuzzy controller (크리스프 타입 퍼지 제어기의 동특성 해석)

  • 권오신;최종수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.67-76
    • /
    • 1995
  • In recent research on the fuzzy controller, the crisp type fuzzy controller model, in which the consequent part of the fuzzy control rules are crisp real numbers instead of fuzzy sets, due to its simplicity in calculation, has been widely used in various applications. In this paper we try to analyze the dynamical behavior of the crisp type fuzzy controller with both inference methods of min-max compositional rule and product-sum inference. The analysis reveals that a crisp type fuzzy controller behaves approximately like a PD controller.

  • PDF

Design of a Fuzzy-Model-Based Controller for Nonlinear Systems (비선형 시스템을 위한 퍼지 모델 기반 제어기의 설계)

  • 주영훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.605-614
    • /
    • 1999
  • This paper addresses analysis and design of a class of complex single-input single-output fuzzy control systems. In the proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Therefore, the globally stable fuzzy controller is designed without finding a common Lyapunov matrix. and shows improved perfonnance and tracking results by taking the advantages of fuzzy-model-based control theory and sliding mode control theory. Furthennore, stability analysis is conducted not Ibr the fuzzy model but for the real underlying nonlinear system. Two numerical examples are included to show the effcctiveness and feasibility of the proposed fuzzy control method.

  • PDF

Implementation of a Fuzzy Control System for Two-Wheeled Inverted Pendulum Robot based on Artificial Neural Network (인공신경망에 기초한 이륜 역진자 로봇의 퍼지 제어시스템 구현)

  • Jeong, Geon-Wu;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • In this paper, a control system for two wheeled inverted pendulum robot is implemented to have more stable balancing capability than the conventional control system. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the control system are obtained for 3 specified weights using a trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the weight is arbitrarily selected. Through some experiments, we find that the proposed fuzzy control system using the neural network is superior to the conventional fuzzy control system.

T-S Fuzzy Control of PMSM Based on T-S Fuzzy Identification (T-S Fuzzy Identification을 이용한 PMSM의 T-S Fuzzy 제어)

  • Baek, Seung-Ho;Kim, Tae-Kue;Kwak, Gun-Pyong;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1862-1863
    • /
    • 2011
  • 본 논문은 T-S Fuzzy Identification을 이용하여 PMSM를 모델링하고 T-S Fuzzy 제어로 PMSM을 제어하는 것 제안합니다. 시스템을 모델링을 위해서는 기존에는 파라미터를 알아야 가능했지만 시스템의 입출력 데이터를 가지고 T-S Fuzzy Identification을 하게 되면 쉽게 시스템을 모델링 할 수 있다. 논문에서는 T-S Fuzzy Identification을 통하여 모델링을 하고 T-S Fuzzy제어을 통해서 PMSM을 제어 할 수 있는 것을 보여주고 한다.

  • PDF

A FUZZY PID Control of Supply Duct Outlet Air Temperature for PEM (FUZZY PID 방법을 이용한 개별 공조시스템의 급기온도 제어)

  • 장영준;박영철;정광섭;한화택;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2002
  • The work presented here provides a control of the supply duct outlet air temperature in PEM (personal environment module) using fuzzy PID controller. In previous work, PID control systems were used, but the result shows that the outlet air temperature and electric heater regulating voltage were oscillated. Fuzzy PID control systems are designed to improve the system response obtained using PID control and implemented experimentally Also, PID controller and fuzzy controller without PID logic are provided to compare the result with that of the fuzzy PID controller. Data obtained shows that the fuzzy PID control system satisfies the design criteria and works proper1y in controlling the supply air temperature. Also it has bettor performance than the previous result obtained using PID control.

The Fuzzy Traffic Control Method for ABR Service (ABR 서비스에서 퍼지 트래픽 제어 방식)

  • Yu, Jae-Taek;Kim, Yong-U;Lee, Jin-Lee;Lee, Gwang-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1880-1893
    • /
    • 1996
  • In this paper, we propose the fuzzy traffic control method in ABR service for the effective use of ATM link. This method, a modified version of EPRCA which is one of rate control methods in ABR service, controls the values of the transmission rates of source by using the fuzzy traffic inference based on switch buffer size and buffer variate rate. For this method, we developed a model and algorithm of the fuzzy traffic control method and a fuzzy traffic controller, after studying fuzzy and neural networks which applied to ATM traffic control and EPRCA. For the fuzzy traffic controller, we also designed a membership function, fuzzy control rules and a max-min inferencing method. We conducted a simulation and compared the link utilization of the fuzzy traffic control method with that of the EPRCA method. The results of the simulation indicated that, compared to EPRCA, the fuzzy traffic control method improves the link utilization by 2.3% in a normal distribution model and by 2.7% in the MMPP model of the source.

  • PDF

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF