• Title/Summary/Keyword: Fuzzy 제어

Search Result 3,394, Processing Time 0.032 seconds

Fuzzy genetic algorithm for optimal control (최적 제어에 대한 퍼지 유전 알고리즘의 적용 연구)

  • 박정식;이태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.297-300
    • /
    • 1997
  • This paper uses genetic algorithm (GA) for optimal control. GA can find optimal control profile, but the profile may be oscillating feature. To make profile smooth, fuzzy genetic algorithm (FGA) is proposed. GA with fuzzy logic techniques for optimal control can make optimal control profile smooth. We describe the Fuzzy Genetic Algorithm that uses a fuzzy knowledge based system to control GA search. Result from the simulation example shows that GA can find optimal control profile and FGA makes a performance improvement over a simple GA.

  • PDF

Speed control of induction motor for electric vehicles using PLL and fuzzy logic (PLL과 fuzzy논리를 이용한 전기자동차 구도용 유도전동기의 속도제어)

  • 양형렬;위석오;임영철;박종건
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.640-643
    • /
    • 1997
  • This paper describes speed controller of a induction motor for electric vehicles using PLL and Fuzzy logic. The proposed system is combined precise speed control of PLL and robust, fast speed control of Fuzzy logic. The motor speed is adaptively incremented or decremented toward the PLL locking range by the Fuzzy logic using information of sampled speed errors and then is maintained accurately by PLL. The results of experiment show excellence of proposed system and that the proposed system is appropriates to control the speed of induction motor for electric vehicles.

  • PDF

Design of fuzzy logic controller using genetic algorithms for the flexible manipulator (Flexible manipulator를 위한 유전 알고리즘을 이용한 퍼지 제어기 설계)

  • 허남건;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1808-1811
    • /
    • 1997
  • A position control algorithm for a flexible manipulato is stuudied. The proposed algorithm is based on a fuzzy theroy with a Steady State Genetic Algorithm(SSGA). The conventional fuzzy methods need expert's knowledges or human experiences. The SSGA, which is one of the optimization algorithms, tunes automatically the input-output membership parameters and fuzzy rules. The computer simulation is presented ot illustrate the approaches. Finally we applied a fuzzy theory with a SSGA to aposition control of a flexible manipulator.

  • PDF

Position-type fuzzy controller using the accumulated error scaling factor (누적오차 조정계수를 이용한 위치형 퍼지제어기)

  • 김동하;전해진;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.177-177
    • /
    • 2000
  • In this paper, we propose a two-input two-output fuzzy controller to improve the performance of transient response and to eliminate the steady state error. The outputs of this controller are the control input calculated by position-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted on-line by fuzzy rules according to the current trend of the controlled process. To show the usefulness of the proposed controller, it is applied to several systems that are difficult to get satisfactory response by conventional PD controllers or PI controllers.

  • PDF

An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks (퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Fuzzy Variable Structure Control of Wheel-Driven Inverted Pendulum (바퀴구동 도립진자에 대한 퍼지 가변구조제어)

  • Yoo Byung-Kook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • This paper suggests a fuzzy variable structure control scheme for Takagi-Sugeno(T-S) fuzzy model and presents the attitude control of the wheel-driven inverted pendulum(WDIP) based on the proposed control algorithm. The proposed controller is designed based on the T-S fuzzy modeling of nonlinear system and the unification of gain matrices in linear subsystems that constitute the overall fuzzy model. The uncertainties generated in the gain matrix unifying procedure can be interpreted as the input disturbances of the conventional variable structure control. These unifying disturbances can be resolved by using the robustness property of the conventional variable structure system. Design example for wheel-driven inverted pendulum demonstrates the utility and validity of the proposed control scheme.

  • PDF

A Study on an Adaptive Model Predictive Control for Nonlinear Processes using Fuzzy Model (퍼지모델을 이용한 비선형 공정의 적응 모델예측제어에 관한 연구)

  • 박종진;우광방
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.97-105
    • /
    • 1996
  • In this paper, an adaptive model predictive controller for nodinear processes using fuzzy model is proposed. Adaptive structure is implemented by recursive fuzzy modeling. The model and control law can be obtained the same as GPC, because the consequent parts of the fuzzy model comprise linear equations of input and output variables. The proposed Adaptive fuzzy model predictive controller (AFMPC) controls nonlinear process well due to the intrinsic nonlinearity of the fuzzy model. When AFMPC's output is variation in the process control input, it maintains zero steady-state offset for a constant reference input and has superior performance. The properties and performance of the proposed control scheme were examined with nonlinear plant by simulation.

  • PDF

Performance Improvement for Back-stepping Controller of a Mobile Robot Based on Fuzzy Systems (퍼지추론을 이용한 이동로봇의 백스테핑 제어기 성능개선)

  • 박재훼;진태석;이만형
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.308-316
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot, which is affected by the derived velocity reference by a kinematic controller. To improve the performance of conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. In this paper, the new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. And simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

Design of a Controller for a Flexible Manipulator Using Fuzzy Theory and Genetic Algorithm (피지이론과 유전알고리츰의 합성에 의한 Flexible Manipulator 제어기 설계)

  • Lee, Kee-Seong;Cho, Hyun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A position control algorithm for a flexible manipulator is studied. The proposed algorithm is based on a fuzzy theory with a Steady State Genetic Algorithm(SSGA) and an Adaptive Genetic Algorithms(AGA). The proposed controller for a flexible manipulator have decreased 90.8%, 31.8%, 31.3% in error when compared with a conventional fuzzy controller, fuzzy controller using neural network, fuzzy controller using evolution strategies, respectively when the weight and the velocity of end-point are 0.8k9 and 1m/s, respectively.

A Fuzzy-Neural Control for Uncertainty Compensation of Robot Manipulator (로봇 매니퓰레이터의 불확실성 보상을 위한 퍼지­-뉴로 제어)

  • 박세준;양승혁;황문구;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1759-1766
    • /
    • 2003
  • This paper proposes a neuro­fuzzy controllers for trajectory tracking control of robot manipulators. The computed torque method is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. Therefore, the proposed controller is used to compensate the uncertainties of robot manipulators. In the neuro­fuzzy controllers, the number of fuzzy rules used forty­nine. The effectiveness of the proposed controllers is demonstrated by computer simulations using two­link robot manipulator, As a result, it is confirmed that the output of the proposed neuro­fuzzy controllers can efficiently decrease the uncertainties of robot manipulator.