• 제목/요약/키워드: Fuzzy 군집방법

검색결과 73건 처리시간 0.017초

핵심정보 중심 건강 메시지 디자인을 위한 웹진 내용분석 (Content Analysis of Webzine for Gist-based Health Message Design)

  • 조영환;최효선;유명순
    • 한국콘텐츠학회논문지
    • /
    • 제14권2호
    • /
    • pp.192-204
    • /
    • 2014
  • 건강 관련 정보들이 범람하는 인터넷에서 핵심정보를 효과적으로 전달하는 것은 매우 중요하다. 본 연구는 웹진 건강자료에 나타난 건강 메시지의 특성을 분석하고 핵심정보를 효과적으로 전달하기 위한 디자인방법을 모색하고자 하였다. 이를 위해 식품의약품안정처에서 제공하는 총 72개 건강자료의 내용을 텍스트와 시각자료로 구분하여 '건강 메시지의 내용', '핵심정보의 빈도와 위치', '직관적 표현'을 중심으로 분석하였고, 특성에 따라 건강자료의 유형을 구분하기 위해 군집분석을 실시하였다. 그 결과 건강 관련 텍스트는 주로 사실과 방법에 관한 내용으로 구성되어 있고, 시각자료는 주로 개념에 집중되어 있는 것으로 나타났다. 그리고 텍스트와 시각자료 모두 핵심정보를 효과적으로 제시하는데 미흡한 점이 발견되었으며, 전문용어와 수량정보에 대한 직관성을 높이기 위한 방법을 모색하는 것이 필요한 것으로 나타났다. 연구결과에 기반하여 인터넷에서 효과적으로 핵심정보 중심의 건강자료를 디자인하기 위해서 고려해야 할 점을 제안하였다.

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

Neural Networks을 이용한 Reactive Ion Etching 공정의 실시간 오류 검출에 관한 연구 (Real-time Fault Detection and Classification of Reactive Ion Etching Using Neural Networks)

  • 유경한;이송재;소대화;홍상진
    • 한국정보통신학회논문지
    • /
    • 제9권7호
    • /
    • pp.1588-1593
    • /
    • 2005
  • 본 논문은 정수장에서 사용하는 응집제의 종류를 결정하기 위한 시스템 개발에 관한 내용이다. 정수장은 여러 단위 처리장으로 구성되며, 불순물을 제거하기 위하여 혼화지에서 응집제를 주입하여 침전을 시킨다. 현재까지 응집제 결정을 위해 Jar-test를 이용하는데, 이 방법은 사람의 주관적인 판단에 의존하므로 실험 오차가 발생할 수 있다. 특히 정수장의 자동화를 위한 시스템 개발에서 가장 큰 걸림돌로 작용하고 있다. 본 논문은 이러한 문제점을 해결하기 위하여 로드맵에 기초한 데이터마이닝 기법을 이용하여 응집제를 선택할 수 있는 제어기를 개발하였다. 제어 규칙은 클러스터링 기법으로 도출하였는데, 군집의 초기 값과 개수는 통계적 지수 값을 사용하여 결정하였다.