• Title/Summary/Keyword: Future scenario

Search Result 878, Processing Time 0.035 seconds

Analysis of Sensitivity and Vulnerability of Endangered Wild Animals to Global Warming (지구 온난화에 따른 국내 멸종위기 야생동물의 민감도 및 취약성 분석)

  • Kim, Jin-Yong;Hong, Seongbum;Shin, Man-Seok
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.235-243
    • /
    • 2018
  • Loss of favorable habitats for species due to temperature increase is one of the main concerns of climate change on the ecosystem, and endangered species might be much more sensitive to such unfavorable changes. This study aimed to analyze the impact of future climate change on endangered wild animals in South Korea by investigating thermal sensitivity and vulnerability to temperature increase. We determined thermal sensitivity by testing normality in species distribution according to temperature. Then, we defined the vulnerability when the future temperature range of South Korea completely deviate from the current temperature range of species distribution. We identified 13 species with higher thermal sensitivity. Based on IPCC future scenarios RCP 4.5 and RCP 8.5, the number of species vulnerable to future warming doubled from 3 under RCP4.5 to 7 under the RCP8.5 scenario. The species anticipated to be at risk under RCP 8.5 are flying squirrel (Pteromys volans aluco), ural owl (Pteromys volans aluco), black woodpecker (Dryocopus martius), tawny owl (Strix aluco), watercock (Gallicrex cinerea), schrenck?s bittern (Ixobrychus eurhythmus), and fairy pitta (Pitta nympha). The other 10 species showing very narrow temperature ranges even without normal distributions and out of the future temperature range may also need to be treated as vulnerable species, considering the inevitable observation scarcity of such endangered species.

Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models (기후모델에 나타난 미래기후에서 쓰시마난류의 변화와 그 영향)

  • Choi, A-Ra;Park, Young-Gyu;Choi, Hui Jin
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • In this study we investigated changes in the Tsushima Warm Current (TWC) under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program's (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

A Study on the Evaluation Method of ACC Test Using Monocular Camera (단안카메라를 활용한 ACC 시험평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • Currently, the second level of the six stages of self-driving technology, as defined by SAE, is commercialized, and the third level is preparing for commercialization. The purpose of ACC is to be evaluated as a system useful for preventing and preventing accidents by minimizing driver fatigue through longitudinal speed control and relative distance control of the vehicle. In this regard, for the study of safety assessment methods in the practical environment of ACC. Distance measurement method using monocular camera and data acquisition equipment such as DGPS are utilized. Based on the evaluation scenario considering the domestic road environment proposed by the preceding study, the relative distance obtained from equipment such as DPGS and the relative distance using a monocular camera in the actual test is verified by comparing and analyzing the safety assessment. The comparison by scenario results showed a minimum error rate of 3.83% in Scenario 1 and a maximum of 14.61% in Scenario 6. The cause of the maximum error is that the lane recognition is not accurate in the camera image and irregular operation conditions such as rushing in or exiting the surrounding area from the walkway. It is expected that safety evaluation using a monocular camera will be possible for other ADAS systems in the future.

Water Quality Modeling of Youngju Dam Reservoir by HSPF, EFDC and WASP (HSPF, EFDC 및 WASP에 의한 영주다목적댐 저수지의 수질예측)

  • Park, Jae-Chung;Choi, Jae-Hun;Song, Young-Il;Song, Sang-Jin;Seo, Dong-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.465-473
    • /
    • 2010
  • This study was carried out to investigate the effect of EFDC hydrodynamic result on the WASP7.3 water quality modeling result in accordance with the change of number of grid for the dam reservoir to be constructed. The simulated flow and BOD, T-N and T-P loads by the HSPF watershed model was used for boundary conditions and the hydrodynamic modeling results was linked with WASP model to predict future water quality after dam construction. The scenarios for EFDC modeling were composed of Scenario 1(141 grid cells) and Scenario 2(568 grid cells). The results of Scenario 2 showed that BOD, T-N, T-P and Chl-a concentrations were decreased 0.073mg/L(8.5%), 0.032mg/L(2.6%), 0.003mg/L(6.8%), 0.644mg/L(4.2%) compared with those of Scenario 1, respectively. As number of grid cell increased, water quality concentrations were decreased and also it caused the longer running time. Therefore, this study suggests that the consideration of the geometry of water body is more important than the number of grid cells for the prediction of water quality of a dam reservoir in EIA.

SENSITIVITY OF THE KEUM RIVER BASIN TO CLIMATE CHANGE

  • Kim, Young-Oh;Seo, Yong-Won;Lee, Seung-Hyun;Lee, Dong-Ryul
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.267-277
    • /
    • 2000
  • This study reports an examination of the sensitivity of water resources in the Keum River basin to climate change. Assuming a doubling in $CO_2$ concentrations, a cooperative study provided four climate change scenarios for this study, which have been translated into temperature and precipitation scenarios on a basin scale. The study utilized these temperature and precipitation data for each climate change scenario as inputs to the NWS-PC model to generate the corresponding streamflow scenario over the Keum River basin. A reservoir simulation model for the Dae-Chung Dam in the Keum River basin has been developed with an object-oriented simulation environment, STELLA. For each streamflow scenario, the performance of the reservoir was assessed in terms of reliability, resiliency, and vulnerability. Although the simulation results are heavily dependent on the choice of the climate change scenarios, the following conclusions can be clearly concluded: (1) the future streamflow over the Dae-Chung Dam tends to decease during the dry period, which seriously increases competitive water use issues and (2) flood control issues predominate under the $2CO_2$-High case.

  • PDF

DEVELOPING U-CITY MARKET SCENARIOS THROUGH A SCENARIO PLANNING APPROACH

  • Yong-Ho Kwon;Jae-Jun Kim;Suk-Hee Han;Jin-Sik Kim;Yoon-Sun Lee
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.459-468
    • /
    • 2007
  • The u-City construction project has become a hot topic in the construction market because it seems economic value-added field for construction firms. However, construction firms don't willingly participate in the u-City construction market because environments of the future business for the u-City are very uncertain. Scenario planning is a very powerful method in managing this uncertain planning situation and is based on scenarios that help each enterprise appropriately adapt itself to its own business environments. Therefore it is based on the main principles of systems thinking and multiple futures. For the purpose of dealing with such uncertainties, this paper attempts to develop the possible market scenarios of the u-City construction market in S.Korea through a scenario planning approach. From this perspective, we considered various aspects of the u-City construction such as market demands, technology development, policy level and management environment. After considering the relevant issues, we identified the main trends and key uncertainties. Finally, we developed three coherent u-City construction market scenarios. Construction firms can use these scenarios as a basic reference for market analysis and business strategy. Therefore, this paper is able to enhance the participation of construction firms in the u-City construction market.

  • PDF

The Effect of Climate Change on Water Quality Analysis in a Dam River Basin (기후변화시나리오에 따른 댐유역의 장기 수질변화 예측)

  • Jung, Je Ho;Kim, Dong Il;Choi, Hyun Gu;Han, Kun Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.107-121
    • /
    • 2011
  • To assess the impact of climate change on water quality in an impounded river basin, this study estimated future air temperature and rainfall in the years of 2020, 2050 and 2080 by statistically downscaling the simulation results from two GCM models combined with two emission scenarios (A2 and B1). Both scenarios were selected from the Special Report on Emission Scenarios (SRES) suggested by IPCC. The A2 scenario represents an extreme condition whereas the B1 scenario represents a clean and energy efficient condition which is similar to that of study basin. With the results of estimated climate factors and land use data, the discharge and the concentrations of BOD, TN and TP in the Andong dam basins were simulated using the SWAT model. The change in BOD concentration for the B1 emission scenario was greater than the A2 scenario in the annual increase range and the pollution level. The concentration of TN was decreased during March? June which is drought period and increased again afterward. In contrast to TN, the concentration of TP was generally decreased. The change in TP concentration was greater for the B1 scenario than the A2 scenario.

Development of Timely Counter-scenario on Small Scale Engagements (소규모 교전에서의 적시 대응 시나리오 개발 방안 연구)

  • Ahn, Euikoog;Chang, Dae S.;Pyun, JaiJeong;Kwon, Yongjin James;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • Developing future weapons systems has become increasingly complicated and costly. There, modeling and simulation techniques have been highly interested in developing the defense systems. Modeling and simulation techniques provide a means to simulate military training, strategies, military doctrines, and weapons acquisition. In this paper, we proposed a small scale engagement scenario generation method for engagement M&S model. Generated scenario is one of critical factors in the field of commander training, operational analysis, and tactical evaluation. The objective of this paper is to develop a scenario generation method for small scale engagement using the FSA(Finite State Automata) and DFS(Depth First Search) algorithm. The proposed method is verified using a one-on-one combat engagement scenario between assault ship and reconnaissance ship. Also, we are visualized using Delta3D$^{TM}$.

Evaluating Changes and Uncertainty of Nitrogen Load from Rice Paddy according to the Climate Change Scenario Multi-Model Ensemble (기후변화시나리오 다중모형 앙상블에 따른 논 질소 유출 부하량 변동 및 불확실성 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Yeob, So-Jin;Kim, Minwook;Kim, Jin Ho;Kim, Min-Kyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.47-62
    • /
    • 2020
  • Rice paddy accounts for approximately 52.5% of all farmlands in South Korea, and it is closely related to the water environment. Climate change is expected to affect not only agricultural productivity also the water and the nutrient circulation. Therefore this study was aimed to evaluate changes of nitrogen load from rice paddy considering climate change scenario uncertainty. APEX-Paddy model which reflect rice paddy environment by modifying APEX (Agricultural Policy and Environmental eXtender) model was used. Using the AIMS (APCC Integrated Modeling Solution) offered by the APEC Climate Center, bias correction was conducted for 9 GCMs using non-parametric quantile mapping. Bias corrected climate change scenarios were applied to the APEX-Paddy model. The changes and uncertainty in runoff and nitrogen load were evaluated using multi-model ensemble. Paddy runoff showed a change of 23.1% for RCP4.5 scenario and 45.5% for RCP8.5 scenario compared the 2085s (2071 to 2100) against the base period (1976 to 2005). The nitrogen load was found to be increased as 43.9% for RCP4.5 scenario and 76.0% for RCP8.5 scenario. The uncertainty analysis showed that the annual standard deviation of nitrogen loads increased in the future, and the maximum entropy indicated an increasing tendency. And Duncan's analysis showed significant differences among GCMs as the future progressed. The result of this study seems to be used as a basis for mid- and long-term policies for water resources and water system environment considering climate change.

Study of fuel cell CHP-technology on electricity generation sector using LEAP-model (LEAP 모형을 이용한 연료전지 열병합발전설비 도입에 따른 온실가스배출저감 잠재량 분석)

  • Shin, Seung-Bok;Jun, Soo-Young;Song, Ho-Jun;Park, Jong-Jin;Maken, Sanjeev;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.230-238
    • /
    • 2009
  • We study about small gas engine and fuel cell CHP (Combined Heat and Power) as the technologies for energy conservation and $CO_2$ emissions reduction. Korea government plans to use them in near future. This study quantitatively analyzed energy consumption and $CO_2$ emissions reduction potential of small CHP instead of existing electric power plant (coal steam, combined cycle and oil steam) using LEAP (Long-range Energy Alternative Planning system) as energy-economic model. Three future scenarios are discussed. In every scenario similar condition for each CHP is used. Alternative scenario I: about 6.34% reduction in $CO_2$ emissions is observed in 2019 due to increase in amount of gas engine CHP and fuel cell CHP while coal use in thermoelectric power plant is almost stagnant. In alternative scenario II: a small 0.8% increase in $CO_2$ emission is observed in 2019 keeping conditions similar to alternative scenario I but using natural gas in combined cycle power plant instead of coal. During alternative scenario II overall $CO_2$ emission reduction is observed in 2019 due to added heat production from CHP. Alternative scenario III: about 0.8% reduction in $CO_2$ emissions is observed in 2019 using similar CHP as AS I and AS II. Here coal and oil are used in thermoelectric power plant but the quantity of oil and coal is almost constant for next decade.