• Title/Summary/Keyword: Future battlefield

Search Result 122, Processing Time 0.026 seconds

Study of consideration for future tactical communication system development (미래 전술통신체계개발을 위한 고려사항 연구)

  • Byun, Jongsin;Park, Sangjun;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.18 no.5_2
    • /
    • pp.35-41
    • /
    • 2018
  • The Army has developed the concept of terrestrial warfare in conjunction with the Joint Concept and has introduced TICN as the base communication system to support it. TICN has been used to improve the transmission speed and to increase the coverage distance. Through this, TICN is making efforts to create network-centered operation environment so that information can be distributed in real time or near real time from the monitoring system to the hitting system. However, TICN is not enough to overcome the network limitations that may arise from various contingencies in battlefield situations. Therefore, in this paper, we investigated the limitations of communication according to the situations that can occur in the battlefield situation and studied the considerations to overcome them.

  • PDF

Firing Data Calculation Algorithm for Smart Weapon System Under Non-standard Conditions (스마트무장 비 표준조건 사격제원 산출 알고리즘)

  • Moon, Kyujin;Jeong, Ui-Taek;Lee, Yongseon;Choi, Sungho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.233-240
    • /
    • 2022
  • The smart weapon system is a new weapon system of the future battlefield environment as a miniature guided weapon that performs precision strike missions through terminal phase guidance. However, it has small coverage to guide due to its low maneuverability because the smart weapon is controlled by using actuator of piezoelectric drive type due to the structural limitations. In this paper, we propose a firing data calculation algorithm under non-standard conditions to increase the effectiveness of the smart weapon. The proposed algorithm calculates firing data under non-standard conditions by calibrating firing data under standard conditions using information acquired in battlefield environments. The performance of the proposed algorithm is verified by numerical simulations under various conditions.

Adaptive Mission Control Architecture with Flexible Levels of Autonomy (유연한 자율화 수준의 적응형 임무통제 아키텍처)

  • Wonik Park;Hojoo Lee;Joonsung Choi;Tokson Choe;Chonghui Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.265-276
    • /
    • 2024
  • The future battlefield operation concept does not focus on advanced and complete weapon systems, but requires a new battlefield operation concept that can effectively demonstrate offensive power by combining a large number of low-cost, miniaturized weapons. Recently, research on the autonomous application of major technologies that make up the mission control system is actively underway. However, since the mission control system is still dependent on the operator's operating ability when operating multiple robots, there are limitations to simply applying the automation technology of the existing mission control system. Therefore, we understand how changes in operator capabilities affect multi-robot operation and propose an adaptive mission control architecture design method that supports multi-robot integrated operation by adjusting the level of autonomy of the mission control system according to changes in operator capability.

A direction of warfighting experiments for a scientific combat Development (과학적 전투발전을 위한 전투실험 발전 방향)

  • Chung, Choon-Il;Lee, Myeong-Woo
    • Journal of National Security and Military Science
    • /
    • s.5
    • /
    • pp.351-392
    • /
    • 2007
  • Combat Development is process of studying and developing concept, doctrine, weapon systems, organization and training for the improvement of combat capability to be ready present and future warfare. The combat development domain consists of 6 fields Doctrine, Organization, Material, Training, Personnel, and Facilities. The cornerstones of combat development are "How to prepare" and "How to fight" in the future warfare. ROK- TRADOC(Republic of Korea Army Training and Doctrine Command) has implemented combat development that applies CBRS (Concept-Based Requirements System) and "Vision - Capstone concept - operating and functional concept - FOC(Future Operational Capabilities) Requirements". To prepare for the possibility or new types or wars in the future, the creation of new concept and system is essential. Though verification with various instruments, combat power can be secured and exhibited. Combat development by empirical mind estimation means that is no longer relevant.To prepare combat development based on scientific analysis, there is a need for powerful engineering analysis and verification, in order to prepare for uncertain and diverse future battlefield environments. In this thesis, warfighting experiment is essential ways and means to pursue the scientific combat development ; investigated tendency of combat development environment, and analyzed diversification aspects of possible future warfare. In conclusion, concept of campaign experiment and role is the conerstone of scientific combat development; and lays out the roadmap of all affecting components to its development.

  • PDF

Hacking attack and vulnerability analysis for unmanned reconnaissance Tankrobot (무인정찰 탱크로봇에 대한 해킹 공격 및 취약점 분석에 관한 연구)

  • Kim, Seung-woo;Park, Dea-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1187-1192
    • /
    • 2020
  • The dronebot combat system is a representative model of the future battlefield in the 4th industrial revolution. In dronebot, unmanned reconnaissance tankrobot can minimize human damage and reduce cost with higher combat power than humans. However, since the battlefield environment is very complex such as obstacles and enemy situations, it is also necessary for the pilot to control the tankrobot. Tankrobot are robots with new ICT technology, capable of hacking attacks, and if there is an abnormality in control, it can pose a threat to manipulation and control. A Bluetooth sniffing attack was performed on the communication section of the tankrobot and the controller to introduce a vulnerability to Bluetooth, and a countermeasure using MAC address exposure prevention and communication section encryption was proposed as a security measure. This paper first presented the vulnerability of tankrobot to be operated in future military operations, and will be the basic data that can be used for defense dronebot units.

A Study on the Militarization of Artificial Intelligence Technology in North Korea and the Development Direction of Corresponding Weapon System in South Korea (북한 인공지능 기술의 군사화와 우리 군의 대응 무기체계 발전방향 연구)

  • Kim, Min-Hyuk
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2021
  • North Korea's science and technology policies are being pursued under strong leadership and control by the central government. In particular, a large part of the research and development of science and technology related to the Fourth Industrial Revolution in North Korea is controlled and absorbed by the defense organizations under the national defense-oriented policy framework, among which North Korea is making national efforts to develop advanced technologies in artificial intelligence and actively utilize them in the military affairs. The future weapon system based on AI will have superior performance and destructive power that is different from modern weapons systems, which is likely to change the paradigm of the future battlefield, so a thorough analysis and prediction of the level of AI militarization technology, the direction of development, and AI-based weapons system in North Korea is needed. In addition, research and development of South Korea's corresponding weapon systems and military science and technology are strongly required as soon as possible. Therefore, in this paper, we will analyze the level of AI technology, the direction of AI militarization, and the AI-based weapons system in North Korea, and discuss the AI military technology and corresponding weapon systems that South Korea military must research and develop to counter the North Korea's. The next study will discuss the analysis of AI militarization technologies not only in North Korea but also in neighboring countries in Northeast Asia such as China and Russia, as well as AI weapon systems by battlefield function, detailed core technologies, and research and development measures.

A Study on Decentralized Combats of the Armed Forces of Ukraine Based on Mission Command (임무형 지휘에 기초한 우크라이나군의 분권화 전투 연구)

  • Shin, Hee Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.115-120
    • /
    • 2022
  • The Rsussian Armed Forces(RAF) invaded Ukraine on Feburary 24. However, the Armed Forces of Ukraine(AFU) unexpectedly blocked the Russian wave attack made the war between Ukraine and Russia lengthened. Major think-tanks and military experts in the world assessed that the AFU overwhelmed the RAF at the initial stage of the war because of decentralized combats based on mission command. Especially, the decentralized small units of the AFU damaged the RAF and slowed down its Iniative. The 4th industrial revolution makes the Korean Peninsula the multi-domain battlefield in the future; accordingly, the Decentralized combat won't be a choice, but a necessity in the future. Therefore, the AFU's offensive decentralized combats in this war Suggests many things to the Republic of Korea Army.

A Study on the Concept of Military Robotic Combat Using the 4th Industrial Revolution Technology (4차 산업혁명 기술을 활용한 군사로봇 전투개념 연구)

  • Sang-Hyuk Park;Seung-Pil Namgung;Sung-Kwon Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.397-401
    • /
    • 2023
  • The study presents milestones for the Korean military to win the future battlefield based on the 4th Industrial Revolution. Chapter 1 deals with the necessity of research on how advanced countries operate industrial technology in the defense sector based on the 4th Industrial Revolution. Chapter 2 examines the current technology status of the 4th Industrial Revolution in Korea and the concept of Korean combat. Chapter 3 analyzes the military robotic technology of advanced military countries through examples of unmanned combat robots in the United States, Israel, and Germany. In the end, in future battles, it will be possible to dominate the battlefield only by taking a leap into a super-connected and super-intelligent military based on a high-tech platform. Our military should also research and develop military robotics in accordance with the characteristics of each combat system, and further expand and develop the concept of combat performance to protect our core capabilities and centers from enemy cyber, electronic warfare, and space attacks.

Integrated Scenario Authoring Method using Mission Impact Analysis Tool due to Cyber Attacks (사이버공격에 의한 임무영향 분석 도구를 이용한 통합시나리오 저작 방법)

  • Yonghyun Kim;Donghwa Kim;Donghwan Lee;Juyoub Kim;Myung Kil Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.107-117
    • /
    • 2023
  • It must be possible to assess how combat actions taking place in cyberspace affect the military's major mission systems and weapon systems. In order to analyze the mission impact caused by a cyber attack through cyber M&S, the target mission system and cyber warfare elements must be built as a model and a scenario for simulation must be authored. Many studies related to mission impact analysis due to cyber warfare have been conducted focusing on the United States, and existing studies have authored separate scenarios for physical battlefields and cyber battlefields. It is necessary to build a simulation environment that combines a physical battlefield model and a cyber battlefield model, and be able to integrate and author mission scenarios and cyber attack/defense scenarios. In addition, the physical battlefield and cyber battlefield are different work areas, so authoring two types of scenarios for simulation is very complicated and time-consuming. In this paper, we propose a method of using mission system information to prepare the data needed for scenario authoring in advance and using the pre-worked data to author an integrated scenario. The proposed method is being developed by reflecting it in the design of the scenario authoring tool, and an integrated scenario authoring in the field of counter-fire warfare is being performed to prove the proposed method. In the future, by using a scenario authoring tool that reflects the proposed method, it will be possible to easily author an integrated scenario for mission impact analysis in a short period of time.

Applied Practices on the Application of VR/AR/MR Technologies to LVC Training Systems

  • Jong-Hoon Lee;Hun-Keun Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.149-159
    • /
    • 2023
  • The Republic of Korea (ROK) Army is developing the Army Synthetic Battlefield Training System and plans divisional-level Live, Virtual, and Constructive (LVC) integrated training. This study proposes a plan to apply VR/AR/MR (Virtual Reality/Augmented Reality/Mixed Reality) technology to LVC integrated training systems to enhance the efficiency and effectiveness of future LVC integrated training. The study investigated immersive military training systems in the ROK and advanced countries. As a result, we confirm that immersive technology can significantly improve the efficiency and effectiveness of military training. Accordingly, we review the key technologies required for building a defense training system with immersive features and propose training subjects that can be enhanced in effectiveness and efficiency when built with an immersive approach. We also propose a plan to apply immersive technology to the Live, Virtual, and Constructive systems for the development of future LVC integrated training system.