• 제목/요약/키워드: Future Prediction

검색결과 1,763건 처리시간 0.03초

TPR*-트리의 성능 분석에 관한 연구 (A Performance Study on the TPR*-Tree)

  • 김상욱;장민희;임승환
    • 한국공간정보시스템학회 논문지
    • /
    • 제8권1호
    • /
    • pp.17-25
    • /
    • 2006
  • TPR*-트리는 효과적으로 이동 객체의 미래 위치 예측을 수행하기 위하여 가장 널리 사용되는 인덱스 구조이다. 그러나 TPR*-트리는 인덱스 생성 이후 미래 예측 시점이 증가함에 따라 사장 영역과 영역중복의 문제가 커지며, 이로 인하여 질의 처리 시 액세스되는 TPR*-트리 노드들의 수가 많아지는 성능 문제가 발생한다. 본 논문에서는 실험을 통하여 이러한 성능 저하의 문제점을 정량적으로 규명한다. 먼저, 미래 예측 시점이 증가함에 따라 질의 처리 성능이 얼마나 저하되는가를 보이고, 이동 객체의 위치 갱신 연산이 이러한 성능 저하 문제를 얼마나 완화시키는가를 보인다. 이러한 공헌은 TPR*-트리의 추가적인 성능 개선을 위한 정책을 고안하는데, 중요한 실마리를 제공할 수 있을 것이다.

  • PDF

마코프 체인 프로세스를 적용한 해양사고 발생 예측 (Prediction of Marine Accident Frequency Using Markov Chain Process)

  • 장은진;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 추계학술대회
    • /
    • pp.266-266
    • /
    • 2019
  • 해마다 증가하고 있는 해양사고는 기관고장, 충돌, 좌초, 화재 등 다양하게 발생하고 있다. 이러한 해양사고는 대형 인명사고의 위험이 있어 사전에 사고를 예방 하는 게 무엇보다 중요하다. 이를 위해서는 해양사고 발생을 사전에 예측하고 이에 대응할 수 있는 예측 체계가 요구된다. 본 연구에서는 과거에 발생한 데이터를 근거로 미래를 예측할 수 있는 마코프 체인 프로세스(Markov Chain Process)를 적용하여 해양사고 발생을 사전에 예측하기 위한 모델링을 제안한다. 제시된 모델링을 적용하여 미래 발생 가능한 해양사고 발생 확률을 산출하고 실제 발생한 빈도와 비교하였다. 또한 많이 사용되는 다른 예측 분석 방법과 비교하여 예측의 정확성을 측정하였다. 이를 통해 해양사고 발생에 관한 예측 체계를 마련하는데 하나의 확률 모형을 제안하였으며, 나아가 다양한 해양사고의 문제를 예측하는데 기여할 것으로 기대된다.

  • PDF

배전 선로 부하예측 모델의 신뢰성 평가를 위한 비교 검증 시스템 (Development of Comparative Verification System for Reliability Evaluation of Distribution Line Load Prediction Model)

  • Lee, Haesung;Lee, Byung-Sung;Moon, Sang-Keun;Kim, Junhyuk;Lee, Hyeseon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.115-123
    • /
    • 2021
  • Through machine learning-based load prediction, it is possible to prevent excessive power generation or unnecessary economic investment by estimating the appropriate amount of facility investment in consideration of the load that will increase in the future or providing basic data for policy establishment to distribute the maximum load. However, in order to secure the reliability of the developed load prediction model in the field, the performance comparison verification between the distribution line load prediction models must be preceded, but a comparative performance verification system between the distribution line load prediction models has not yet been established. As a result, it is not possible to accurately determine the performance excellence of the load prediction model because it is not possible to easily determine the likelihood between the load prediction models. In this paper, we developed a reliability verification system for load prediction models including a method of comparing and verifying the performance reliability between machine learning-based load prediction models that were not previously considered, verification process, and verification result visualization methods. Through the developed load prediction model reliability verification system, the objectivity of the load prediction model performance verification can be improved, and the field application utilization of an excellent load prediction model can be increased.

Future water quality analysis of the Anseongcheon River basin, Korea under climate change

  • Kim, Deokwhan;Kim, Jungwook;Joo, Hongjun;Han, Daegun;Kim, Hung Soo
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.1-11
    • /
    • 2019
  • The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) predicted that recent extreme hydrological events would affect water quality and aggravate various forms of water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed and sunlight) were established using the Representative Concentration Pathways (RCP) 8.5 climate change scenario suggested by the AR5 and calculated the future runoff for each target period (Reference:1989-2015; I: 2016-2040; II: 2041-2070; and III: 2071-2099) using the semi-distributed land use-based runoff processes (SLURP) model. Meteorological factors that affect water quality (precipitation, temperature and runoff) were inputted into the multiple linear regression analysis (MLRA) and artificial neural network (ANN) models to analyze water quality data, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P). Future water quality prediction of the Anseongcheon River basin shows that DO at Gongdo station in the river will drop by 35% in autumn by the end of the $21^{st}$ century and that BOD, COD and SS will increase by 36%, 20% and 42%, respectively. Analysis revealed that the oxygen demand at Dongyeongyo station will decrease by 17% in summer and BOD, COD and SS will increase by 30%, 12% and 17%, respectively. This study suggests that there is a need to continuously monitor the water quality of the Anseongcheon River basin for long-term management. A more reliable prediction of future water quality will be achieved if various social scenarios and climate data are taken into consideration.

지수평활법과 SUR 모형을 통한 세계 해상물동량 예측 연구 (A Study on the Prediction of the World Seaborne Trade Volume through the Exponential Smoothing Method and Seemingly Unrelated Regression Model)

  • 안영균
    • 무역학회지
    • /
    • 제44권2호
    • /
    • pp.51-62
    • /
    • 2019
  • This study predicts the future world seaborne trade volume with econometrics methods using 23-year time series data provided by Clarksons. For this purpose, this study uses simple regression analysis, exponential smoothing method and seemingly unrelated regression model (SUR Model). This study is meaningful in that it predicts worldwide total seaborne trade volume and seaborne traffic in four major items (container, bulk, crude oil, and LNG) from 2019 to 2023 as there are few prior studies that predict future seaborne traffic using recent data. It is expected that more useful references can be provided to trade related workers if the analysis period was increased and additional variables could be included in future studies.

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

잠재 산림분포 변화를 고려한 토지이용도가 장래 기후변화에 미치는 영향 모사 (A Simulation Study on Future Climate Change Considering Potential Forest Distribution Change in Landcover)

  • 김재철;이종범;최성호
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.105-117
    • /
    • 2012
  • Future climate according to land-use change was simulated by regional climate model. The goal of study was to predict the distribution of meteorological elements using the Weather Research & Forecasting Model (WRF). The KME (Korea Ministry of Environment) medium-category land-use classification was used as dominant vegetation types. Meteorological modeling requires higher and more sophisticated land-use and initialization data. The WRF model simulations with HyTAG land-use indicated certain change in potential vegetation distribution in the future (2086-2088). Compared to the past (1986-1988) distribution, coniferous forest area was decreased in metropolitan and areas with complex terrain. The research shows a possibility to simulate regional climate with high resolution. As a result, the future climate was predicted to $4.5^{\circ}$ which was $0.5^{\circ}$ higher than prediction by Meteorological Administration. To improve future prediction of regional area, regional climate model with HyTAG as well as high resolution initial values such as urban growth and CO2 flux simulation would be desirable.

Analysis of Extreme Sea Surface Temperature along the Western Coastal area of Chungnam: Current Status and Future Projections

  • Byoung-Jun Lim;You-Soon Chang
    • 한국지구과학회지
    • /
    • 제44권4호
    • /
    • pp.255-263
    • /
    • 2023
  • Western coastal area of Chungnam, including Cheonsu Bay and Garorim Bay, has suffered from hot and cold extremes. In this study, the extreme sea surface temperature on the western coast of Chungnam was analyzed using the quantile regression method, which extracts the linear regression values in all quantiles. The regional MOHID (MOdelo HIDrodinâmico) model, with a high resolution on a 1/60° grid, was constructed to reproduce the extreme sea surface temperature. For future prediction, the SSP5-8.5 scenario data of the CMIP6 model were used to simulate sea surface temperature variability. Results showed that the extreme sea surface temperature of Cheonsu Bay in August 2017 was successfully simulated, and this extreme sea surface temperature had a significant negative correlation with the Pacific decadal variability index. As a result of future climate prediction, it was found that an average of 2.9℃ increased during the simulation period of 86 years in the Chungnam west coast and there was a seasonal difference (3.2℃ in summer, 2.4℃ in winter). These seasonal differences indicate an increase in the annual temperature range, suggesting that extreme events may occur more frequently in the future.

효율적인 태양광 발전량 예측을 위한 Dynamic Piecewise 일사량 예측 모델 (A Dynamic Piecewise Prediction Model of Solar Insolation for Efficient Photovoltaic Systems)

  • 양동헌;여나영;마평수
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권11호
    • /
    • pp.632-640
    • /
    • 2017
  • 일사량은 태양광 발전시스템의 전력 생산량에 가장 큰 영향을 미치는 기상요소이며, 다른 기상요소들과 달리 기상청의 일기예보를 통해 제공받을 수 없다. 따라서 효율적인 태양광 발전시스템 운용을 위해 일사량 예측에 관한 연구는 필수적이다. 본 연구는 기상정보 데이터 기반의 Dynamic Piecewise 일사량 예측 모델을 제안한다. Dynamic Piecewise 일사량 예측 모델은 유사한 태양고도와 유사한 날씨의 데이터 조각들로 나누어 학습하기 위해, 예측하는 시점의 태양고도와 운량을 기준으로 전체 데이터를 동적으로 나눈 후 기계학습 알고리즘인 다중 선형회귀 알고리즘으로 학습하여 일사량을 예측하는데 사용된다. 본 연구의 성능을 검증하기 위해 제안 모델인 Dynamic Piecewise 일사량 예측 모델과 이전 연구에서 제안한 모델, 기존의 상관관계식 기반 일사량 예측 모델에 동일한 기상정보 데이터 셋을 적용하여 비교하였으며, 비교결과 본 연구에서 제안한 모델이 가장 정확한 일사량 예측 성능을 보였다.

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF