• Title/Summary/Keyword: Future Prediction

Search Result 1,763, Processing Time 0.027 seconds

Prediction model for electric power consumption of seawater desalination based on machine learning by seawater quality change in future (장래 해수수질 변화에 따른 머신러닝 기반 해수담수 전력비 예측 모형 개발)

  • Shim, Kyudae;Ko, Young-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1023-1035
    • /
    • 2021
  • The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Spectrum Requirements Prediction for WLAN Considering Frequency Interference (간섭을 고려한 무선 LAN 주파수 소요량 예측)

  • Jang, Byung-Jun;Park, Duk-Kyu;Yoon, Hyun-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.900-908
    • /
    • 2012
  • Owing to the proliferation of smart phone users, a proactive spectrum policy is needed in order to deal with increasing data traffic. Therefore, the prediction of frequency requirements for future wireless local area network (WLAN) as well as a licensed cellular communication is necessary. In this paper, we proposed a new prediction method for WLAN spectrum requirements. This method includes both a traditional prediction method and an offloading percentage from cellular network, Also, it can consider a frequency interference between access points using a statistical approach. Based on these approaches, we can predict the spectrum requirements of future domestic WLAN services considering the frequency interference. Finally, we suggest the spectrum policy for WLAN which can prevent spectrum shortage of future WLAN services.

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Seo, Sang-Wook;Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the enviromuent. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Lee, Dong-Wook;Kong, Seong-G;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.920-924
    • /
    • 2005
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the environment. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

  • PDF

Intelligent System Predictor using Virtual Neural Predictive Model

  • 박상민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.101-105
    • /
    • 1998
  • A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.

  • PDF

Solar Power Generation Prediction Algorithm Using the Generalized Additive Model (일반화 가법모형을 이용한 태양광 발전량 예측 알고리즘)

  • Yun, Sang-Hui;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1572-1581
    • /
    • 2022
  • Energy conversion to renewable energy is being promoted to solve the recently serious environmental pollution problem. Solar energy is one of the promising natural renewable energy sources. Compared to other energy sources, it is receiving great attention because it has less ecological impact and is sustainable. It is important to predict power generation at a future time in order to maximize the output of solar energy and ensure the stability and variability of power. In this paper, solar power generation data and sensor data were used. Using the PCC(Pearson Correlation Coefficient) analysis method, factors with a large correlation with power generation were derived and applied to the GAM(Generalized Additive Model). And the prediction accuracy of the power generation prediction model was judged. It aims to derive efficient solar power generation in the future and improve power generation performance.

Definition of Digital Twin Models for Prediction of Future Performance of Bridges (교량의 장기성능 예측을 위한 디지털 트윈모델 정의)

  • Shim, Chang-Su;Jeon, Chi Ho;Kang, Hwi Rang;Dang, Ngoc Son;Lon, Sokanya
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.13-22
    • /
    • 2018
  • Future performance prediction of bridges is challenging task for structural engineers. Well-organized information from design, construction and operation stages is essential for the assessment of structures. Digital twin model is a new concept to realize more reliable data platform for management of infrastructures. Damage history including degradation of material, cracking, corrosion, etc. needs to be accumulated in the digital model. The digital model is linked to the analysis model for the assessment of structural performance considering changed mechanical properties of structural components. In this paper, initial definition digital twin model of a PSC-I girder bridge is proposed.

Predicting depth value of the future depth-based multivariate record

  • Samaneh Tata;Mohammad Reza Faridrohani
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.453-465
    • /
    • 2023
  • The prediction problem of univariate records, though not addressed in multivariate records, has been discussed by many authors based on records values. There are various definitions for multivariate records among which depth-based records have been selected for the aim of this paper. In this paper, by means of the maximum likelihood and conditional median methods, point and interval predictions of depth values which are related to the future depth-based multivariate records are considered on the basis of the observed ones. The observations derived from some elements of the elliptical distributions are the main reason of studying this problem. Finally, the satisfactory performance of the prediction methods is illustrated via some simulation studies and a real dataset about Kermanshah city drought.

Research on predicting changes in crop cultivation areas due to climate change: Focusing on Hallabong (기후변화에 따른 과수작물 재배지 변화 예측 연구: 한라봉을 중심으로)

  • Park, Hye Eun;Lee, Jong Tae
    • The Journal of Information Systems
    • /
    • v.33 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • Purpose The purpose of this study is to use climate data to find the algorithm with the highest Hallabong production prediction ability and to predict future Hallabong production in areas where Hallabong cultivation is expected to be possible. Design/methodology/approach The research is conducted in two stages. In the first step, find the algorithm with the highest predictive power among XGBoost, Random Forest, SVM, and LSTM methodologies. In the second stage, the algorithm found in the first stage is applied to predict future Hallabong production in three regions where Hallabong production is expected to be possible. Findings As with many prediction studies, we found that XGBoost showed the highest prediction power. Even in areas where Hallabong production is expected to be possible, Hallabong production was predicted to be highest in Hongcheon, Gangwon-do, which has the highest latitude.