• 제목/요약/키워드: Future Prediction

검색결과 1,811건 처리시간 0.032초

개발 예정지역 도로교통소음 음향파워레벨 산정과 응용에 관한 연구 (A Study on the Computation and Application of Sound Power Level for Road Traffic Noise of Renewal Area)

  • 김득성;장서일
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.635-644
    • /
    • 2005
  • This paper is. a study on relation between road traffic noise(RTN) and sound power level(PWL). At present, many experimental formulae and prediction formulae are used for prediction of RTN. But these formulae are difficult to appiy to the metropolitan area because these formulae are inaccurate in the different condition from reference condition. This paper calculate RTN and PWL of each prediction formula, choose the best one and make a noise map of the subject area. Procedure is as follows. First, calculate $L_{eq}$ of RTN using experimental formulae and prediction formulae. Second, calculate PWL using $L_{eq}$ of RTN and distance attenuation for point source at semi-free field. Third, choose the most accurate formula. And finally, make a noise map of the subject area at present and future. The result using noise map will be able to apply to application field. Noise mapping tool used on this paper is Raynoise program using Ray Tracing Method(RTM), Mirror Image Source Method(MISM) and Hybrid Method(HM).

자연어 처리 및 기계학습을 통한 동의보감 기반 한의변증진단 기술 개발 (Donguibogam-Based Pattern Diagnosis Using Natural Language Processing and Machine Learning)

  • 이승현;장동표;성강경
    • 대한한의학회지
    • /
    • 제41권3호
    • /
    • pp.1-8
    • /
    • 2020
  • Objectives: This paper aims to investigate the Donguibogam-based pattern diagnosis by applying natural language processing and machine learning. Methods: A database has been constructed by gathering symptoms and pattern diagnosis from Donguibogam. The symptom sentences were tokenized with nouns, verbs, and adjectives with natural language processing tool. To apply symptom sentences into machine learning, Word2Vec model has been established for converting words into numeric vectors. Using the pair of symptom's vector and pattern diagnosis, a pattern prediction model has been trained through Logistic Regression. Results: The Word2Vec model's maximum performance was obtained by optimizing Word2Vec's primary parameters -the number of iterations, the vector's dimensions, and window size. The obtained pattern diagnosis regression model showed 75% (chance level 16.7%) accuracy for the prediction of Six-Qi pattern diagnosis. Conclusions: In this study, we developed pattern diagnosis prediction model based on the symptom and pattern diagnosis from Donguibogam. The prediction accuracy could be increased by the collection of data through future expansions of oriental medicine classics.

연속발생 데이터를 위한 실시간 데이터 마이닝 기법 (A Real-Time Data Mining for Stream Data Sets)

  • 김진화;민진영
    • 한국경영과학회지
    • /
    • 제29권4호
    • /
    • pp.41-60
    • /
    • 2004
  • A stream data is a data set that is accumulated to the data storage from a data source over time continuously. The size of this data set, in many cases. becomes increasingly large over time. To mine information from this massive data. it takes much resource such as storage, memory and time. These unique characteristics of the stream data make it difficult and expensive to use this large size data accumulated over time. Otherwise. if we use only recent or part of a whole data to mine information or pattern. there can be loss of information. which may be useful. To avoid this problem. we suggest a method that efficiently accumulates information. in the form of rule sets. over time. It takes much smaller storage compared to traditional mining methods. These accumulated rule sets are used as prediction models in the future. Based on theories of ensemble approaches. combination of many prediction models. in the form of systematically merged rule sets in this study. is better than one prediction model in performance. This study uses a customer data set that predicts buying power of customers based on their information. This study tests the performance of the suggested method with the data set alone with general prediction methods and compares performances of them.

가속수명자료를 이용한 경험적 베이즈 예측분석 (Empirical Bayesian Prediction Analysis on Accelerated Lifetime Data)

  • 조건호
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권1호
    • /
    • pp.21-30
    • /
    • 1997
  • 가속수명시험에서 강한충격수준에서 부품들의 고장시간이 관측되고 가속화된 고장시간을 토대로 정상충격수준에서 부품들의 성능을 조사한다. 본 논문은 지수수명분포에서 중도절단된 가속수명자료를 이용하여 고장률의 사전분포의 평균을 알 때, 정상조건하에서 하나의 미래 관찰치의 예측문제를 사전분포의 모수에 대하여 적률추정량을 이용하는 경험적 베이즈 접근방법을 적용시켜 경험적 베이즈 예측분포와 예측구간에 대하여 연구하였다.

  • PDF

Model selection algorithm in Gaussian process regression for computer experiments

  • Lee, Youngsaeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권4호
    • /
    • pp.383-396
    • /
    • 2017
  • The model in our approach assumes that computer responses are a realization of a Gaussian processes superimposed on a regression model called a Gaussian process regression model (GPRM). Selecting a subset of variables or building a good reduced model in classical regression is an important process to identify variables influential to responses and for further analysis such as prediction or classification. One reason to select some variables in the prediction aspect is to prevent the over-fitting or under-fitting to data. The same reasoning and approach can be applicable to GPRM. However, only a few works on the variable selection in GPRM were done. In this paper, we propose a new algorithm to build a good prediction model among some GPRMs. It is a post-work of the algorithm that includes the Welch method suggested by previous researchers. The proposed algorithms select some non-zero regression coefficients (${\beta}^{\prime}s$) using forward and backward methods along with the Lasso guided approach. During this process, the fixed were covariance parameters (${\theta}^{\prime}s$) that were pre-selected by the Welch algorithm. We illustrated the superiority of our proposed models over the Welch method and non-selection models using four test functions and one real data example. Future extensions are also discussed.

고속철도 환경소음예측을 위한 계산 모델 제안 (A Proposal on Calculation Model to Predict Environmental Noise Prediction Emitted by High Speed Trains)

  • 조대승;조준호;김진형;장강석;윤제원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.843-848
    • /
    • 2011
  • Planning and construction of railway for high speed trains up to 400 km/h are recently driven in Korea. High speed train is one of the environment-friendly fastest mass transportation means but its noise generated by rolling, traction and aerodynamic mechanism can cause public complaints of residents nearby railways. To cost-effectively prevent the troublesome noise in a railway planning stage, the rational railway noise prediction method considering the characteristics of trains as well as railway structures should be required but it is difficult to find authentic methods for Korean high speed trains such as KTX and KTX-II. In this study, we propose a framework of our own railway noise prediction model emitted by Korean high speed trains over 250 km/h based on the recent research results carried out in EU countries. The model considers railway sound power level using several point sources distributed in heights as well as tracks, whose detail speed- and frequency-dependent emission characteristics of Korean high speed trains should be determined in near future by measurement or numerical analysis. The attenuation during propagation outdoors is calculated by the well-known ISO 9613-2 and auxiliary methods to consider undulated terrain and wind effect.

  • PDF

실적공사비에 의한 지하철 공사비 예측모형에 관한 연구 (A Study on the Prediction-Formulas of Approximate Estimate Based on Actual Work Cost for Subway)

  • 박종혁;전영배;박홍태
    • 한국재난정보학회 논문집
    • /
    • 제9권1호
    • /
    • pp.11-21
    • /
    • 2013
  • 본 연구는 2004년 이후 도입된 실적 공사비 제도에 의하여 착공된 지하철 건설공사를 대상으로 실적공사비, 공사규모 그리고 시간을 고려하여 공사비를 예측하는 식을 제시하였다. 11개의 지하철공사 자료를 이용하여 지하철 공사비 예측을 위한 비용-규모 지수 n(신뢰범위:0.5~0.7)을 구한 결과, 총공사비 0.713, 순공사비 0.77로 도출되었다. 본 연구에서 제시한 공사비 예측 식 모델은 향후 지하철 공사 적용 현장의 사업기획, 예비조사, 타당성조사, 기본설계 단계에서 개산 공사비를 추정하는데 효과적으로 적용할 수 있을 것이다.

딥러닝 기반의 프로세스 예측에 관한 연구: 동적 순환신경망을 중심으로 (Exploring process prediction based on deep learning: Focusing on dynamic recurrent neural networks)

  • 김정연;윤석준;이보경
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권4호
    • /
    • pp.115-128
    • /
    • 2018
  • Purpose The purpose of this study is to predict future behaviors of business process. Specifically, this study tried to predict the last activities of process instances. It contributes to overcoming the limitations of existing approaches that they do not accurately reflect the actual behavior of business process and it requires a lot of effort and time every time they are applied to specific processes. Design/methodology/approach This study proposed a novel approach based using deep learning in the form of dynamic recurrent neural networks. To improve the accuracy of our prediction model based on the approach, we tried to adopt the latest techniques including new initialization functions(Xavier and He initializations). The proposed approach has been verified using real-life data of a domestic small and medium-sized business. Findings According to the experiment result, our approach achieves better prediction accuracy than the latest approach based on the static recurrent neural networks. It is also proved that much less effort and time are required to predict the behavior of business processes.

Investigating the Regression Analysis Results for Classification in Test Case Prioritization: A Replicated Study

  • Hasnain, Muhammad;Ghani, Imran;Pasha, Muhammad Fermi;Malik, Ishrat Hayat;Malik, Shahzad
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권2호
    • /
    • pp.1-10
    • /
    • 2019
  • Research classification of software modules was done to validate the approaches proposed for addressing limitations in existing classification approaches. The objective of this study was to replicate the experiments of a recently published research study and re-evaluate its results. The reason to repeat the experiment(s) and re-evaluate the results was to verify the approach to identify the faulty and non-faulty modules applied in the original study for the prioritization of test cases. As a methodology, we conducted this study to re-evaluate the results of the study. The results showed that binary logistic regression analysis remains helpful for researchers for predictions, as it provides an overall prediction of accuracy in percentage. Our study shows a prediction accuracy of 92.9% for the PureMVC Java open source program, while the original study showed an 82% prediction accuracy for the same Java program classes. It is believed by the authors that future research can refine the criteria used to classify classes of web systems written in various programming languages based on the results of this study.

Development of Big Data-based Cardiovascular Disease Prediction Analysis Algorithm

  • Kyung-A KIM;Dong-Hun HAN;Myung-Ae CHUNG
    • 한국인공지능학회지
    • /
    • 제11권3호
    • /
    • pp.29-34
    • /
    • 2023
  • Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).