• Title/Summary/Keyword: Fusion peptide

Search Result 139, Processing Time 0.027 seconds

Identification of a Functionally Relevant Signal Peptide of Mouse Ficolin A

  • Kwon, Sang-Hoon;Kim, Min-Soo;Kim, Dong-Bum;Lee, Keun-Wook;Choi, Soo-Young;Park, Jin-Seu;Kim, Yeon-Hyang;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.532-538
    • /
    • 2007
  • Mouse ficolin A is a plasma protein with lectin activity, and plays a role in host defense by binding carbohydrates, especially GlcNAc, on microorganisms. The ficolin A subunit consists of an N-terminal signal peptide, a collagen-like domain, and a C-terminal fibrinogen-like domain. In this study, we show that ficolin A can be synthesized and oligomerized in a cell and secreted into culture medium. We also identify a functionally relevant signal peptide of ficolin A by using MS/MS analysis to determine the N-terminal sequence of secreted ficolin A. When the signal peptide of mouse ficolin A was fused with enhanced green fluorescent protein (EGFP), EGFP was released into HEK 293 cell medium, suggesting that the signal peptide can efficiently direct ficolin A secretion. Moreover, our results suggest that the signal peptide of ficolin A has potential application for the production of useful secretory proteins.

Visualization of Hepatitis B Virus (HBV) Surface Protein Binding to HepG2 Cells

  • Lee, Dong-Gun;Park, Jung-Hyun;Choi, Eun-A;Han, Mi-Young;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.175-179
    • /
    • 1996
  • Viral surface proteins are known to play an essential role in attachment of the virus particle to the host cell membrane. In case of the hepatitis B virus (HBV) several reports have described potential receptors on the target cell side, but no definite receptor protein has been isolated yet. As for the viral side, it has been suggested that the preS region of the envelope protein, especially the preS1 region, is involved in binding of HBV to the host cell. In this study, preS1 region was recombinantly expressed in the form of a maltose binding protein (MBP) fusion protein and used to identify and visualize the expression of putative HBV receptor(s) on the host cell. Using laser scanned confocal microscopy and by FACS analysis, MBP-preS1 proteins were shown to bind to the human hepatoma cell line HepG2 in a receptor-ligand specific manner. The binding kinetic of MBP-preS1 to its cellular receptor was shown to be temperature and time dependent. In cells permeabilized with Triton X-100 and treated with the fusion protein, a specific staining of the nuclear membrane could be observed. To determine the precise location of the receptor binding site within the preS1 region, several short overlapping peptides from this region were synthesized and used in a competition assay. In this way the receptor binding epitope in preS1 was revealed to be amino acid residues 27 to 51, which is in agreement with previous reports. These results confirm the significance of the preS1 region in virus attachment in general, and suggest an internalization pathway mediated by direct attachment of the viral particle to the target cell membrane.

  • PDF

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Developmental Regulation of the Peptide Hydrolyzing Activities of the Proteasome in Myogenic Differentiation

  • Chung Pil Joong;Woo Joo Hong;Kim Hye Sun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • We examined a role of proteasome, the non-lysosomal multicatalytic protease complex,on the differentiation of chick embryonic myoblasts in culture. The peptide hydrolyzing activities of proteasome were found to change; the hydrolyzing activity against N-succinyl-Leu-Leu- Val- Tyr-7 -amido-4-methy1coumarin (SLLVY-AMC) was prominent and increased with myogenic differentiation. Proteasome inhibitors, N-carbobenzoxy-Leu-Leu-norvalinal (MG115) and N-carbobenzoxy-Ile-Glu (O-t-butyl)-Ala-Leucinal (PSI), blocked membrane fusion of myoblasts as well as the SLLVY-AMC hydrolyzing activity. Those inhibitory activities of the agents occurred in parallel, but were reversible and both cell fusion and the peptidase activity were restored when the agents were withdrawn from the culture medium. On the other hand, the agents caused accumulation of the ubiquitinylated proteins in the cytoskeletal proteins. These results suggest that each of the peptide hydrolyzing activities of proteasome is independently regulated during the myogenic differentiation and the chymotrypsin-like activity may play an important role in that process.

  • PDF

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult

  • Zhang, You-en;Wang, Jia-ning;Tang, Jun-ming;Guo, Ling-yun;Yang, Jian-ye;Huang, Yong-zhang;Tan, Yan;Fu, Shou-zhi;Kong, Xia;Zheng, Fei
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.

Comparative Analysis of ABM/P-15, Bone Morphogenic Protein and Demineralized Bone Matrix after Instrumented Lumbar Interbody Fusion

  • Sathe, Ashwin;Lee, Sang-Ho;Kim, Shin-Jae;Eun, Sang Soo;Choi, Yong Soo;Lee, Shih-min;Seuk, Ju-Wan;Lee, Yoon Sun;Shin, Sang-Ha;Bae, Junseok
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.825-833
    • /
    • 2022
  • Objective : ABM/P-15 (anorganic bone matrix/15-amino acid peptide fragment) is a commercially available synthetically manufactured P-15 collagen peptide fragment, that is adsorbed on ABM. This study was done to investigate the efficacy of ABM/P-15 in achieving fusion in the lumbar spine and comparing it with that of recombinant bone morphogenic protein-2 (rhBMP-2) and demineralized bone matrix (DBM). Methods : A retrospective observational study of prospectively collected data of 140 patients who underwent lumbar spinal fusion surgeries in a single specialty spine hospital between 2016 and 2020, with a minimum 6-month follow-up was conducted. Based on the material used for the augmentation of the bone graft at the fusion site, the patients were divided into three categories namely ABM/P-15, rhBMP-2, and DBM group. Results : ABM/P-15, rhBMP-2, and DBM were used in 46, 44, and 50 patients, respectively. Patient characteristics like age, gender, bone mineral density, smoking history, and presence of diabetes mellitus were comparable amongst the three groups. Average follow-up was 16.0±5.2, 17.9±9.8, and 26.2±14.9 months, respectively in ABM/P-15, rhBMP-2, and DBM groups. The fusion was achieved in 97.9%, 93.2%, and 98% patients while the average time-to-union was 4.05±2.01, 10±4.28, and 9.44±3.49 months (p<0.001), respectively for ABM/P-15, rhBMP-2, and DBM groups. The average pre-operative Visual analogue scale score was 6.93±2.42, 7.14±1.97, 7.01±2.14 (p=0.900) for ABM/P-15, rhBMP-2 and DBM groups, respectively, which reduced to 1.02±0.80, 1.21±0.96, and 0.54±0.70 (p=0.112), respectively at the last follow up. Pre-operative Oswestry disability index scores were 52.7±18.02, 55.4±16.8, and 53.56±19.6 (p=0.751) in ABM/P-15, rhBMP-2, and DBM groups, which post-operatively reduced to 33.77±15.52, 39.42±16.47, and 38.3±15.89 (p=0.412) and further to 15.74±8.3, 17.41±10.45, and 16.76±9.81 (p=0.603), respectively at the last follow-up. Conclusion : ABM/P-15 appears to achieve union significantly earlier than rhBMP-2 and DBM in lumbar spinal fusion cases while maintaining a comparable clinical and complication profile.

Expression, Purification and Transduction of PEP-1-Botulinum Neurotoxin Type A (PEP-1-BoNT/A) into Skin

  • Kim, Dae-Won;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Jang, Sang-Ho;Won, Moo-Ho;Kang, Tae-Cheon;Chung, Kwang-Hoe;Jung, Hyun-Ho;Cho, Sung-Woo;Choi, Jin-Hi;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.642-647
    • /
    • 2006
  • Botulinum neurotoxin A (BoNT/A) has been used therapeutically to treat muscular hypercontractions and sudomotor hyperactivity and it has been reported that BoNT/A might have analgesic properties in headache. PEP-1 peptide is a known carrier peptide that delivers fulll-ength native proteins in vitro and in vivo. In this study, a BoNT/A gene were fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-BoNT/A fusion protein. The expressed and purified PEP-1-BoNT/A fusion proteins were efficiently transduced into cells in a time- and dose-dependent manner when added exogenously in a culture medium. In addition, immuno-histochemical analysis revealed that PEP-1-BoNT/A fusion protein efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin. These results suggest that PEP-1-BoNT/A fusion protein provide an efficient strategy for therapeutic delivery in various human diseases related to this protein.

Overexpression and Characterization of Eukaryotic Peptide Hormone Precursors in E. Coli. (대장균에서 진핵세포 펩타이드 호르몬 전구물질의 대량생산과 특성규명)

  • 홍승환
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.303-309
    • /
    • 1990
  • In order to have a handle on the availability of eukarvotic peptide hormone precursors, a cDNA encoding angler fish prepro-SRIF I was manipulated so that it can be produced in large quantity from heterologous E. coli cells. Using T7 overexpression system, fusion constructs between the T7 phage coat protein Sl0 and the prepro-SRIF were made and modified as desired. From the host E. coli strain, BL21 DE3, harboring these plasmid constructs, three different SRIF related polypeptides were expressed in large amount and characterized. The results confirm the exact construction and authenticity of the overexpressed proteins from E. coli cells. The importance of this heterologous overexpression in hard to get peptide hormone precursors as well as the suitability of the target peptide hormone SRIF for this approach are discussed.

  • PDF

Expression of Recombinant Hybrid Peptide Gaegurin4 and LL37 using Fusion Protein in E. coli (Glutathione S-Transferase에 융합한 재조합 Hybrid Peptide Gaegurin-LL37의 대장균에서의 발현)

  • Bayarbat, Ishvaanjil;Lee, Jae-Hag;Lee, Soon-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.92-97
    • /
    • 2012
  • Antimicrobial peptides (AMPs) are important components of living organisms acting against Gram-negative and Gram-positive bacterial and fungal pathogens. Cathelicidin human peptides have a variety of biological activities that can be used in clinical applications. AMPs are not produced naturally in large quantities, and chemical synthesis is also economically impractical, especially for long peptides. Therefore, as an alternative, heterologous expression of AMPs by recombinant techniques has been studied as a means to reduce production costs. E. coli is an excellent host for the expression of AMPs, as well as other recombinant proteins, because of the low cost involved and its easy manipulation. However, overexpression of AMPs in E. coli has been shown to cause difficulties resulting from the toxicity of the subsequently produced AMPs. Therefore, fusion expression was theorized to be a solution to this problem. In this study, AMPs were expressed as fused proteins with the glutathione S-transferase (GST) binding protein to protect against the toxicity of AMPs when expressed in E. coli. The LL37, and hybrid gaegurin and LL37 (GGN4(1-16)-LL37(17-32), which we designated as GL32, peptides were expressed as GST-fusion proteins in E. coli and the fusion proteins were then purified by affinity columns. The purified peptides were obtained by removal of GST and were confirmed by western blot analysis. The purified antimicrobial peptides then demonstrated antimicrobial activities against Gram-negative and Gram-positive bacterial strains.

Cloning and functional expression of a cecropin-A gene from the Japanese oak silkworm, Antheraea yamamai (천잠 cecropin-A 유전자 클로닝 및 재조합 발현)

  • Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Sung-Wan;Goo, Tae-Won;Hwang, Jae-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • A cecropin-A gene was isolated from the immunized larvae of the Japanese oak silkworm, Antheraea yamamai and designed Ay-CecA. The complete Ay-CecA cDNA consists of 419 nucleotides with 195 bp open reading frame encoding a 64 amino acid precursor that contains a putative 22-residue signal peptide, a 4-residue propetide and a 37-residue mature peptide with a theoretical mass of 4046.81. The deduced amino acid sequence of the peptide evidenced a significant degree of identity (62 ~ 78% identity) with other lepidopteran cecropins. Like many insect cecropin, Ay-CecA also harbored a glycine residue for C-terminal amidation at the C-end, which suggests potential amidation. To understand this peptide better, we successfully expressed bioactive recombinant Ay-CecA in Escherichia coli that are highly sensitive to the mature peptide. For this, we fused mature Ay-CecA gene with insoluble protein ketosteroid isomerase (KSI) gene to avoid the cell death during induction. The fusion KSI-CecA protein was expressed as inclusion body. The expressed fusion protein was purified by Ni-NTA immobilized metal affinity chromatography (IMAC), and cleaved by cyanogen bromide (CNBr) to release recombinant Ay-CecA. The purified recombinant Ay-CecA showed considerably antibacterial activity against Gram-negative bacteria, E. cori ML 35, Klebsiella pneumonia and Pseudomonas aeruginosa. Our results proved that this peptide with a potent antibacterial activity may play a role in the immune response of Japanese oak silkworm.