• Title/Summary/Keyword: Fusion Contrast

Search Result 142, Processing Time 0.023 seconds

Surface-Enhanced Raman Scattering and DFT Study of 4,4'-Biphenyldithiol on Silver Surface

  • Lee, Yu Ran;Kim, Myung Soo;Kwon, Chan Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.470-474
    • /
    • 2013
  • Surfaced-enhanced Raman scattering (SERS) of 4,4'-biphenyldithiol (BPDT) has been investigated at a silver island film. Ordinary Raman (OR) spectra of neat sample in solid state and in basic solution have also been taken for comparison. The spectral feature in the SERS spectrum was similar to that for the OR spectrum in basic solution, except for the broadening of ring stretching bands indicative of the presence of surface-phenyl ring $\pi$ interaction. In contrast, only absence of the C-H stretching band with very small Raman scattering cross-section seemed not pertinent in judging the definitive orientation of molecule. The observed vibrational bands in the SERS spectrum have been assigned by referring to the normal modes and wavenumbers from density functional theory (DFT) calculations of the simple model as 4,4'-biphenyldithiolates bound to two Ag atoms at the both ends. Excellent agreement between the experimental and the calculated results was achieved, which is remarkable considering the level of theory applied.

A Video Expression Recognition Method Based on Multi-mode Convolution Neural Network and Multiplicative Feature Fusion

  • Ren, Qun
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.556-570
    • /
    • 2021
  • The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.

Blending of Contrast Enhancement Techniques for Underwater Images

  • Abin, Deepa;Thepade, Sudeep D.;Maitre, Amulya R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Exploration has always been an instinct of humans, and underwater life is as fascinating as it seems. So, for studying flora and fauna below water, there is a need for high-quality images. However, the underwater images tend to be of impaired quality due to various factors, which calls for improved and enhanced underwater images. There are various Histogram Equalization (HE) based techniques which could aid in solving these issues. Classifying the HE methods broadly, there is Global Histogram Equalization (GHE), Mean Brightness Preserving HE (MBPHE), Bin Modified HE (BMHE), and Local HE (LHE). Each of these HE extensions have their own pros and cons and thus, by considering them we have considered BBHE, CLAHE, BPDHE, BPDFHE, and DSIHE enhancement algorithms, which are based on Mean Brightness Preserving HE and Local HE, for this study. The performance is evaluated with non-reference performance measures like Entropy, UCIQE, UICM, and UIQM. In this study, we apply the enhancement algorithms on 300 images from the UIEB benchmark dataset and then apply the techniques of cascading fusion on the best-performing algorithms.

A Novel Approach to Enhance Dual-Energy X-Ray Images Using Region of Interest and Discrete Wavelet Transform

  • Ullah, Burhan;Khan, Aurangzeb;Fahad, Muhammad;Alam, Mahmood;Noor, Allah;Saleem, Umar;Kamran, Muhammad
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.319-331
    • /
    • 2022
  • The capability to examine an X-ray image is so far a challenging task. In this work, we suggest a practical and novel algorithm based on image fusion to inspect the issues such as background noise, blurriness, or sharpness, which curbs the quality of dual-energy X-ray images. The current technology exercised for the examination of bags and baggage is "X-ray"; however, the results of the incumbent technology used show blurred and low contrast level images. This paper aims to improve the quality of X-ray images for a clearer vision of illegitimate or volatile substances. A dataset of 40 images was taken for the experiment, but for clarity, the results of only 13 images have been shown. The results were evaluated using MSE and PSNR metrics, where the average PSNR value of the proposed system compared to single X-ray images was increased by 19.3%, and the MSE value decreased by 17.3%. The results show that the proposed framework will help discern threats and the entire scanning process.

Multi-scale context fusion network for melanoma segmentation

  • Zhenhua Li;Lei Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1888-1906
    • /
    • 2024
  • Aiming at the problems that the edge of melanoma image is fuzzy, the contrast with the background is low, and the hair occlusion makes it difficult to segment accurately, this paper proposes a model MSCNet for melanoma segmentation based on U-net frame. Firstly, a multi-scale pyramid fusion module is designed to reconstruct the skip connection and transmit global information to the decoder. Secondly, the contextural information conduction module is innovatively added to the top of the encoder. The module provides different receptive fields for the segmented target by using the hole convolution with different expansion rates, so as to better fuse multi-scale contextural information. In addition, in order to suppress redundant information in the input image and pay more attention to melanoma feature information, global channel attention mechanism is introduced into the decoder. Finally, In order to solve the problem of lesion class imbalance, this paper uses a combined loss function. The algorithm of this paper is verified on ISIC 2017 and ISIC 2018 public datasets. The experimental results indicate that the proposed algorithm has better accuracy for melanoma segmentation compared with other CNN-based image segmentation algorithms.

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

Development of Wafer Bond Integrity Inspection System Based on Laser Transmittance

  • Jang, Dong-Young;Ahn, Hyo-Sok;Mehdi, Sajadieh.S.M.;Lim, Young-Hwan;Hong, Seok-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Among several critical topics in semiconductor fabrication technology, particles in addition to bonded surface contaminations are issues of great concerns. This study reports the development of a system which inspects wafer bond integrity by analyzing laser beam transmittance deviations and the variations of the intensity caused by the defect thickness. Since the speckling phenomenon exists inherently as long as the laser is used as an optical source and it degrades the inspection accuracy, speckle contrast is another obstacle to be conquered in this system. Consequently speckle contrast reduction methods were reviewed and among the all remedies have been established in the past 30 years the most adaptable solution for inline inspection system is applied. Simulation and subsequently design of experiments has been utilized to discover the best solution to improve irradiance distribution and detection accuracy. Comparison between simulation and experimental results has been done and it confirms an outstanding detection accuracy achievement. Bonded wafer inspection system has been developed and it is ready to be implemented in FAB in the near future.

Alteration of Matrix Assembly Receptor for Fibronectin During Chick Myogenesis (계배 근분화 과정에서 Fibronectin의 Matrix Assemnly Receptor의 변화)

  • 문경엽;신기순;강만식
    • The Korean Journal of Zoology
    • /
    • v.33 no.1
    • /
    • pp.108-118
    • /
    • 1990
  • Fibronectin is a glycoprotein found in the extracellular matrix as well as in the serum, and has been known to exert pronouned effed on the myoblast fusion. Our previous studies have suggested that the decrease of fibronectin levels during myogenesis is due to the decreased availability of the receptor for the 28 kDa fragrnent of fibronetin. In the fusion-blocked myoblasts by EGTA, the levels of fibronetin and binding of 28 kDa fragment decreased but far less than the control level. In contrast, the levels of fibronetin and binding of 28 kDa fragment decreased to the control level in the myoblast released from the fusion block. On this account, we suggest that the decrease of fibronetin levels during myoblast fusion is closely associated with the loss or alteration of the receptor for 28 kDa fragment. Mild trypsin treatment decreased the binding of the 28 kDa fragment to the myoblasts significandy. Similarly, the presence of gangliosides in the binding media decreased the binding of the 28 kDa fragment in a dose-dependent manner. Furthermore, gel overlay of 125 I-28 kDa fragment on the SDS-PAGE of the myoblast homogenates revealed that the 28 kDa fragment bound to a 43 kDa protein and to gangliosides as well. These results suggest that myoblast fusion is correlated with decrease of the receptor for the 28 kDa fragment and that the receptor might be a glycoprotein that contains glyco-conjugate found in gangliosides.

  • PDF

Fruiting body development and genetic analysis of somatic hybrids by protoplast fusion in edible fungi (식용버섯의 원형질체 융합체의 자실체 발생 및 유전분석)

  • Yoo, Young Bok;Kong, Won Sik;Oh, Se Jong;Jhune, Chang Sung;Shin, Pyung Gyun;Kim, Beom Gi;Kim, Gyu Hyun;Park, Minsun;Min, Byung Re
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.115-126
    • /
    • 2004
  • Somatic hybrids of inter-compatible and inter-incompatible strains were obtained by protoplast fusion. The fusion products between compatible strains, Pleurotus ostreatus and P. florida, formed heterokaryons, while fusants between incompatible strains such as P. cornucopiae + P. florida, P. ostreatus + Ganoderma applanatum, P. florida + Ganoderma lucidum, and P. ostreatus + Flammulina velutipes formed synkaryons that retained genes from both parents. The heterokaryons showed the same level of basidioma development. In contrast, the synkaryons showed unique characteristics including clamp connection formation at mitosis, either partner basidioma development, and abnormal segregation and recombination compared with inter-compatible strains. Synkaryons can be classified into homokaryoyic and heterokaryotic type. A comparison of somatic hybrids with compatible and incompatible strains was made using random amplified polymorphic DNA (RAPD) analysis. The heterokaryons between compatible species showed the same level of variability and contained both parental RAPD bands. In contrast, most of the synkaryons between incompatible species showed similarity to those of either parental bands and non-parental RAPD bands. Synkaryons can be classified into microgenome insertion type and macrogenome insertion type. A tetrapolar mating system was found among monospore isolates in somatic hybrids and wild type P. ostreatus. Homokaryons from each somatic hybrid combination were paired with tester homokaryons of the initial wild type of P. ostreatus. The changed mating types were identified in progenies. The pattern of mating type switching in somatic hybrids depends on compatibility of fusion partner. There are several factors related to the mechanism of clamp connection formation and fruiting body development of synkaryons. Of these,the major factor may be associated with self-fertility and mating type switching such as homokaryotic fruiting of wild type P. ostreatus. This review will discuss these aspects.

  • PDF