• Title/Summary/Keyword: Fused Deposition Manufacturing

Search Result 69, Processing Time 0.021 seconds

Study on surface roughness by extrusion quantity at FDM (응착조형법(FDM)에서 주사량이 시제품의 표면거칠기에 미치는 영향)

  • 전재억;김준안;정진서;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.387-392
    • /
    • 2001
  • Fused deposition(FD) modeling by Stratasys Inc., is one of the material deposition subfamilies of solid freeform fabrication(SFF) technologies. In this process, build material in the form of a flexible filament, is heated to a semi-liquid state and extruded from a robotically controlled deposition head onto a fixtureless table in a temperature controlled environment. The position of nozzle is computer controlled relative to the base, which allows geometric complex models to be made to precise dimensions. FDM provide what the part was directly tested by the worker. It provide believable data. This study is experiment on surface roughness of part at FDM

  • PDF

Compressive Properties of 3D Printed TPU Samples with Various Infill Conditions (채우기 조건에 따른 3D 프린팅 TPU 샘플의 압축 특성)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.481-493
    • /
    • 2022
  • This study investigated process conditions for 3D printing through manufacturing thermoplastic polyurethane (TPU) samples under different infill conditions. Samples were prepared using a fused deposition modeling 3D printer and TPU filament. 12 infill patterns were set (2D: grid, lines, zigzag; 3D: triangles, cubic, cubic subdivision, octet, quarter cubic; 3DF: concentric, cross 3D, cross, honeycomb), with 3 infill densities (20%, 50%, 80%). Morphology, actual time/weight and compressive properties were analyzed. In morphology: it was found that, as infill density increased, the increase rate of the number of units rose for 2D and fell for 3DF. Printing time varied with the number of nozzle movements. In the 3DF case, the number of nozzle movements increased rapidly with infill density. Sample weight increased similarly. However, where the increase rate of the number of units was low, sample weight was also low. In compressive properties: compressive stress increased with infill density and stress was high for the patterns with layers of the same shape.

A study of mechanical properties with FDM 3D printing layer conditions (FDM 3D Printing 적층조건에 따른 기계적 물성의 연구)

  • Kim, Bum-Joon;Lee, Hong-Tae;Sohn, Il-Seon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

A Study on the Additive Manufacturing Process using Copper Wire-Nylon Composite Filaments (구리 와이어-나일론 복합소재 필라멘트를 이용한 적층제조 공정에 관한 연구)

  • Kim, Ye Jin;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.

Fabrication of Nanofiber-Combined 3D Scaffolds using Dual-Head Deposition Technology (듀얼헤드 적층 기술을 이용한 나노섬유로 결합된 3D 인공지지체 제작)

  • Sa, Min-Woo;Lee, Chang-Hee;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.108-115
    • /
    • 2018
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials to manufacture scaffolds as a synthetic polymer with biodegradability and biocompatibility. The polymer deposition system (PDS) with four axis heads, which can dispense bio-polymers, has been used in scaffold fabrication for tissue engineering applications. A dual-head deposition technology of PDS is an effective technique to fabricate 3D scaffolds. The electrospinning technology has been widely used to fabricate porous and highly interconnected polymer fibers. Thus, PDS can fabricate nanofiber-combined hybrid scaffolds using fused deposition modeling (FDM) and electrospinning methods. This study aims to fabricate nanofiber-combined scaffolds with uniform nanofibers using PDS. The PCL nanofibers were fabricated and evaluated according to the fabrication process parameters. PCL nanofibers were successfully fabricated when the applied voltage, tip-to-collector distance, flow rate, and solution concentration were 5 kV, 1 cm, 0.1 ml/h, and 8 wt%, respectively. The cell proliferation was evaluated according to the electrospinning time. Scanning electron microscopy was used to acquire images of the cross-sectioned hybrid scaffolds. The cell proliferation test of the PCL and nanofiber-combined hybrid scaffolds was performed using a CCK-8 assay according to the electrospinning time. The result of in-vitro cell proliferation using osteosarcoma MG-63 cells shows that the hybrid scaffold has good potential for bone regeneration.

An Estimation on Area Error for Surface Roughness of Rapid Prototype by FDM (주사간격 변화에 의한 응착조형물의 표면예측)

  • Jung, Jin-Seo;Jun, Jae-Uhk;Han, Gu-Sang;Seo, Sang-Ha;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • In any rapid prototyping process, the layer by layer building process introduces an area error between the staircase and the surface line specified by the computer-aided design model. This affects the dimensional accuracy as well as the surface finish for different Road Widths. This paper describes a methodology for computing the area error for any Road Width by the fused deposition modelling system. This technique can be applied to determine the best Road Width of the part, based on the minimum area error. This technique is verified by comparing the results with the experimental measurements of the area error with Road Widths.

  • PDF

Comparison of Accuracy of RP Processes (RP 공정의 정밀도 비교 평가)

  • 변홍석;신행재;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.330-333
    • /
    • 2000
  • Dimensional accuracy and surface quality are very important in rapid prototyping especially when the models are used for the production of tools. This paper presents the development of benchmarking part to investigate dimensional accuracy and surface finish. A new test part is designed to perform benchmarking of major rapid prototyping processes such as selective laser sintering, laminated object manufacturing, stereolithography apparatus, and fused deposition modeling. The test part design includes basic manufacturing features such as holes, walls, squares, cylinder and etc. In addition, the small features are included in order to evaluate the fine details that can be manufactured by a specific RP process. The CMM program that automatically measures different features in the test part is also developed. The evaluation of accuracy as well as surface roughness are discussed for major rapid prototyping processes.

  • PDF

Benchmark Study on Surface Roughness and Mechanical Properties of Rapid Prototypes (쾌속조형부품의 표면거칠기와 기계적 물성치에 관한 비교)

  • Kim Gi-Dae;Kim Jung-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.56-62
    • /
    • 2006
  • Various kinds of rapid prototyping processes are available, such as stereo-lithography apparatus(SLA), fused deposition modeling(FDM), selective laser sintering(SLS), 3 dimensional printing(3DP), and laminated object manufacturing(LOM). In this study, benchmark tests are carried out to obtain detailed informations about surface roughness and mechanical properties of those parts. Although the patterns and roughness averages of part surface are dependent on the surface direction, the roughness of SLA part is the best and that of FDM or 3DP part is the worst. It is shown that FDM part has an advantage in impact strength, SLS(or EOS) part in compressive strength, and LOM part has an advantage in tensile strength and heat resistance, but the change of building direction in FDM and LOM processes severely weakens the tensile and impact strengths.

Benchmark Study on Mechanical Properties of Rapid Prototypes (쾌속 조형품의 기계적물성치 비교에 관한 연구)

  • Kim G.D.;Sung J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.191-192
    • /
    • 2006
  • In these days, various kinds of rapid prototyping processes are available, such as stereo-lithography apparatus(SLA), fused deposition modeling(FDM), selective laser sintering(SLS), 3 dimensional printing(3DP), and laminated object manufacturing(LOM). For detailed informations about mechanical properties of those parts, benchmark tests are carried out. SLS and EOS part has an advantage in compressive strength, SLA has in hardness, FDM part has in impact strength, and LOM part has an advantage in tensile strength and heat resistance. The change of building direction in layered manufacturing processes of FDM and LOM severely weakens the tensile and impact strength.

  • PDF

An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes (투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법)

  • Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.