• Title/Summary/Keyword: Fuse Element

Search Result 53, Processing Time 0.024 seconds

An Experimental Study on Melting Characteristics of Low-voltage Miniature Cartridge Fuse (저압용 소형 관형퓨즈의 용단 특성에 관한 실험적 연구)

  • Ji, H.K.;Kim, J.P.;Song, J.Y.;Choi, Y.W.;Park, C.S.;Park, N.K.;Kil, G.S.
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.15-20
    • /
    • 2013
  • This paper dealt with melting characteristics of low-voltage miniature cartridge fuse used for 220 V electronic equipment. The experimental sample is low-voltage miniature cartridge fuse with rating of 250 V(3A) and size of $5{\times}20$ mm. In order to evaluate melting and scattering characteristics of the fuse, we applied to 8/20 ${\mu}s$ surge current, overload current and external thermal stress such as flame of fire. From the experimental results, the fuse element was melted and scattered by applied surge current(above 0.79 kA) and overload current(above 4.5 A). It was also attached to the inner surface of the fuse tube. The fuse element was attached as a thin film on inner surface of fuse tube when large surge current was applied. It was confirmed, however, the fuse element was not changed by external thermal stress such as flame and hot-air.

An Analysis of the I-t Characteristic of Low Voltage Distribution Line Fuse Using the FEM (유한 요소법을 이용한 저압 배전용 전선퓨즈의 I-t 특성 해석)

  • 황명환;박두기;이세현;한상옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.74-80
    • /
    • 1997
  • In this paper, we deal with the I -t characteristic of low voltage distribution fuse (line fuse). That fuse element has two parts;One is low temperature melting element(LTME) to put up with over current and the other is high temperature melting element (HTME) which put up with large current. Melting charateristic of fuse is determined by L TME and HTME. So we verified their properties of fuse design, mathematically, by simulating the thermal and electric characteristics of each other. We simulated the I-t characteristic of line fuse by using the numerical method;Finite Element Method(FEM). Then, we could acquire very similar result at the HTME and L TME area when compared the simlation result with experimental one.

  • PDF

A Study of Fuse Element Burnback to the Arc Voltage (아크전압에 따른 fuse element의 burnback에 관한 연구)

  • Youn, Y.J.;Park, D.K.;Lee, S.H.;Sim, E.B.;Koo, K.W.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1205-1209
    • /
    • 1997
  • When the short fault current is flowed into a fuse, the notch of element is melted, and burnbacked by arc plasma, which caused by the voltage of fuse at both ends. The cutoff ability of fuse is heavily influenced by the degree of burnback. In this paper, we investigated the amount of burnback to the applied voltage di/dt variation, As a result, we confirmed that the amount of burnback is proportional to the variation of the applied voltage.

  • PDF

A Study on the Breaking Phenomena Varying with Notch Shape of Fuse-Element (휴즈 엘리먼트 노치 형태에 따른 차단특성에 관한 연구)

  • Lee, B.S.;Lee, S.H.;Lee, J.C.;Bark, G.B.;Han, S.O.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1382-1384
    • /
    • 1994
  • Description is given of the effect of fuse-element notch shape on interruption parameters. The notch of fuse-elements have all the same area. Tests were carried out at direct current and carried out the effect of the fuse element construction on the process of interrupting short circuit and overload current. The arcing phenomenon in a low voltage fuse operation in case of high current value of short circuit is analyzed.

  • PDF

A Study on the Causal Analysis of Electrical Fire by Using Fuse (퓨즈를 이용한 전기화재의 원인분석에 관한 연구)

  • Lee, Chun-Ha;Kim, Shi-Kuk;Ok, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2008
  • This paper studied on the causal analysis of electrical fire by using fuse that it is used with safety device in electrical products. The experimental samples used are glass tube fuse(15 A, $5{\times}20mm$) and temperature fuse(10 A, $72^{\circ}C$). The experiment analyzed on the characteristics of damaged fuse by main causes(short circuit, overload, external flame) of electrical fire. The results showed, in case of glass tube fuse identified different characteristics in external form and element surface and element texture of damaged fuse by main causes of electrical fire. In case of temperature fuse identified different characteristics in external form and sliding contact surface and sliding contact texture of damaged fuse only by external flame.

I-t Curve Simulation of the Low Voltage Distriubtion Line Fuse (저압배선용 전선퓨즈의 I-t곡선 시뮬레이션)

  • 박두기;이세현;박영범;구경완;김종식;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.214-217
    • /
    • 1996
  • In this paper. we deal wish the I-t characteristic of law voltage distribution fuse. It is used to be thermal characteristic in being produced at fuse element part. The elements are divided low temperature melting element(LTME) by high temperature melting element(HTME). Those parts make of coordination. The characteristic of fuse is decided by material and design etc. used at element. We analysis I-t characteristic curve by using the numerical method. And we compared the curve of simulation with that of experiment

  • PDF

Experimental investigations on resilient beam-column end-plate connection with structural fuse

  • Arunkumar Chandrasekaran;Umamaheswari Nambiappan
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.315-337
    • /
    • 2023
  • The steel structure is an assembly of individual structural members joined together by connections. The connections are the focal point to transfer the forces which is susceptible to damage easily. It is challenging to replace the affected connection parts after an earthquake. Hence, steel plates are utilised as a structural fuse that absorbs connection forces and fails first. The objective of the present research is to develop a beam-column end plate connection with single and dual fuse and study the effect of single fuse, dual fuse and combined action of fuse and damper. In this research, seismic resilient beam-column end plate connection is developed in the form of structural fuse. The novel connection consists of one main fuse was placed horizontally and secondary fuse was placed vertically over main fuse. The specimens are fabricated with the variation in number of fuse (single and dual) and position of fuse (beam flange top and bottom). From the fabricated ten specimens five specimens were loaded monotonically and five cyclically. The experimental results are compared with Finite Element Analysis results of Arunkumar and Umamaheswari (2022). The results are critically assessed in the aspect of moment-rotation behaviour, strain in connection components, connection stiffness, energy dissipation characteristics and ductility. While comparing the performance of total five specimens, the connection with fuse exhibited superior performance than the conventional connection. An equation is proposed for the moment of resistance of end-plate connection without and with structural fuse.

A Study on the melting Characteristics of Fuse Element by Repeating Overcurrent (반복과전류에 의한 퓨즈 엘리먼트의 용단특성에 관한 연구)

  • Kim, Youn-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • This paper propose analysis and examination of the melting characteristic of fuse elements by repeating overcurrent as a depletion factor of high pressure current limiting fuse through test following existence and nonexistence of extinction material and various configuration of elements. To examine deterioration progress rate by repeating overcurrent we analyzed heat for various element notching configuration, designed plate type, ring type element and estimated the relationship with life span by analyzing breaking characteristic through repeating overcurrent test with adjusting load factor at Silicon Dioxide(SiO2) filled state or in air. A Crack by repeat stress, decrease of section and transformation by friction with extinction material by repeating overcurrent causes a problem which shortens life span based on fuse repeating frequency. Since the contents of this paper might be useful to research the correlation between friction of materials and repeating life span based on load factor of repeating current, the quality of product would be improved through solution of the problem.

Design of very fast acting fuse element using the Ag-Cu alloy (Ag-Cu 합금을 이용한 매우 빠른 동작 특성의 퓨즈 엘리멘트 설계)

  • Kim, Eun-Min;Lee, Seung-Hwan;Cho, Dae-Kweon;Kim, Shin-Hyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1070-1074
    • /
    • 2014
  • With the development of the electronics industry and widespread supply of many different electrical appliances, the factors of the electrical fires are also diversified. For this reason, the fuse, safety-critical component, needs accurate and stable operating characteristics for preventing various fire factor, and also needs various operating characteristics. Especially when the all electrical resistance are dropped by internal short of circuit, high current inrushes and makes the fire. In order to prevent this, very fast acting fuses should be applied. However, existing very fast acting characteristics fuse has less wire dimension of element Ag100% metal than that of fast acting fuse, and it is made of plating with low melting point metals, so it satisfy very fast acting but it can't satisfy durability and safety. For this reason, in this study, through the analyzing fusing characteristics of Ag-Cu alloy composition, the new alloy composition, which implement to very fast acting fuse without decrease of fuse elements dimension, is suggested. And this study classify the operating characteristics changes, a resistance change, and the rated current of the fuse in the overall composition change of Ag-Cu alloying. and it can be utilized for designing fuse.

The Analysis ol Temperature Distribution by the Fuse Element Shape (퓨우즈 엘리먼트의 형상에 따른 온도분포해석)

  • Park, D.K.;Lee, S.H.;Kim, Y.R.;Choi, T.S.;Lee, J.C.;Park, K.B.;Koo, K.W.;Kim, J.S.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1688-1690
    • /
    • 1996
  • In this paper, by using the Finite Element Method, we analysed the melting and clearing characteristic of fuse elments shapes. The melting characteristics and the effects of temperature conduction by fuse element shames was studied. We compared the actul testing results by the clearing device with the simulation result.

  • PDF