• 제목/요약/키워드: Fusarium species

Search Result 324, Processing Time 0.023 seconds

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF

Unique Phylogenetic Lineage Found in the Fusarium-like Clade after Re-examining BCCM/IHEM Fungal Culture Collection Material

  • Triest, David;De Cremer, Koen;Pierard, Denis;Hendrickx, Marijke
    • Mycobiology
    • /
    • v.44 no.3
    • /
    • pp.121-130
    • /
    • 2016
  • Recently, the Fusarium genus has been narrowed based upon phylogenetic analyses and a Fusarium-like clade was adopted. The few species of the Fusarium-like clade were moved to new, re-installed or existing genera or provisionally retained as "Fusarium." Only a limited number of reference strains and DNA marker sequences are available for this clade and not much is known about its actual species diversity. Here, we report six strains, preserved by the Belgian fungal culture collection BCCM/IHEM as a Fusarium species, that belong to the Fusarium-like clade. They showed a slow growth and produced pionnotes, typical morphological characteristics of many Fusarium-like species. Multilocus sequencing with comparative sequence analyses in GenBank and phylogenetic analyses, using reference sequences of type material, confirmed that they were indeed member of the Fusarium-like clade. One strain was identified as "Fusarium" ciliatum whereas another strain was identified as Fusicolla merismoides. The four remaining strains were shown to represent a unique phylogenetic lineage in the Fusarium-like clade and were also found morphologically distinct from other members of the Fusarium-like clade. Based upon phylogenetic considerations, a new genus, Pseudofusicolla gen. nov., and a new species, Pseudofusicolla belgica sp. nov., were installed for this lineage. A formal description is provided in this study. Additional sampling will be required to gather isolates other than the historical strains presented in the present study as well as to further reveal the actual species diversity in the Fusarium-like clade.

Identification and classification of pathogenic Fusarium isolates from cultivated Korean cucurbit plants

  • Walftor Bin Dumin;You-Kyoung Han;Jong-Han Park;Yeoung-Seuk Bae;Chang-Gi Back
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.121-128
    • /
    • 2022
  • Fusarium wilt disease caused by Fusarium species is a major problem affecting cultivated cucurbit plants worldwide. Fusarium species are well-known soil-borne pathogenic fungi that cause Fusarium wilt disease in several cucurbit plants. In this study, we aimed to identify and classify pathogenic Fusarium species from cultivated Korean cucurbit plants, specifically watermelon and cucumber. Thirty-six Fusarium isolates from different regions of Korea were obtained from the National Institute of Horticulture and Herbal Science Germplasm collection. Each isolate was morphologically and molecularly identified using an internal transcribed spacer of ribosomal DNA, elongation factor-1α, and the beta-tubulin gene marker sequence. Fusarium species that infect the cucurbit plant family could be divided into three groups: Fusarium oxysporum (F. oxysporum), Fusarium solani (F. solani), and Fusarium equiseti (F. equieti). Among the 36 isolates examined, six were non-pathogenic (F. equiseti: 15-127, F. oxysporum: 14-129, 17-557, 17-559, 18-369, F. solani: 12-155), whereas 30 isolates were pathogenic. Five of the F. solani isolates (11-117, 14-130, 17-554, 17-555, 17-556) were found to be highly pathogenic to both watermelon and cucumber plants, posing a great threat to cucurbit production in Korea. The identification of several isolates of F. equiseti and F. oxysporum, which are both highly pathogenic to bottle gourd, may indicate waning resistance to Fusarium species infection.

Diversity and Pathogenic Characteristics of Fusarium Species isolated from Wilted Soybeans in Korea (콩 시들음병에 관여하는 Fusarium균의 다양성 및 병원학적 특성)

  • Choi, Hyo-Won;Kim, Seungnoh;Hong, Sung Kee
    • The Korean Journal of Mycology
    • /
    • v.48 no.3
    • /
    • pp.297-312
    • /
    • 2020
  • Wilted soybean plants were collected from soybeans cultivation fields in Korea from 2014 to 2016. Fusarium spp., Colletotrichum spp., Rhizoctonia spp., Macrophomina sp., Phytophthora spp., and Calonectria ilicicola were obtained from the infected samples. Out of these, Fusarium spp. were the dominant species (79.1%). In total, 53 isolates were identified as F. solani species complex, F. oxysporum species complex, F. graminearum species complex, and F. fujikuroi species complex based on mycological characteristics. Sequence typing analysis was conducted using translation elongation factor 1 alpha (TEF) to confirm the identification of isolates. All isolates were identified as F. solani, F. oxysporum, F. commune, F. asiaticum, and F. fujikuroi based on phylogenetic analysis of TEF sequences. Pathogenicity of 44 isolates was tested on three cultivars of soybean using the root dip inoculation method. Out of 5 Fusarium species, only F. asiaticum could not cause the symptoms or be weak. Ten isolates were selected based on pathogenic characters and species identification to investigate the host range and screen soybean cultivars for resistance. Fusarium solani, F. oxysporum, and F. commune were aggressive only to soybean, and F. fujikuroi was aggressive to kidney bean, yellow cowpea, black cowpea, adzuki bean as well as soybean. All 13 Korean soybean cultivars were susceptible to F. commune and F. fujikuroi. Out of 13 cultivars, cv. Janggi, cv. Poongsannamul, and cv. Socheongja were resistant to Fusarium wilt, while cv. Hwanggeumol and Chamol were susceptible to Fusarium wilt.

Distribution and Pathogenicity of Fusarium Species Associated with Soybean Root Rot in Northeast China

  • Yingying Liu;Xuena Wei;Feng Chang;Na Yu;Changhong Guo;Hongsheng Cai
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.575-583
    • /
    • 2023
  • Fusarium root rot is an increasingly severe problem in soybean cultivation. Although several Fusarium species have been reported to infect soybean roots in Heilongjiang province, their frequency and aggressiveness have not been systematically quantified in the region. This study aimed to investigate the diversity and distribution of Fusarium species that cause soybean root rot in Heilongjiang province over two years. A total of 485 isolates belonging to nine Fusarium species were identified, with F. oxysporum and F. solani being the most prevalent. Pot experiments were conducted to examine the relative aggressiveness of different Fusarium species on soybean roots, revealing that F. oxysporum and F. solani were the most aggressive pathogens, causing the most severe root rot symptoms. The study also assessed the susceptibility of different soybean cultivars to Fusarium root rot caused by F. oxysporum and F. solani. The results indicated that the soybean cultivar DN51 exhibited the most resistance to both pathogens, indicating that it may possess genetic traits that make it less susceptible to Fusarium root rot. These findings provide valuable insights into the diversity and distribution of Fusarium species that cause soybean root rot and could facilitate the development of effective management strategies for this disease.

Toxicity and Fumonisin B1 Production by Fusarium Isolates from Chines Corn Samples (중국산 옥수수로부터 분리한 Fusarium균주의 독성 및 Fumonisin B1의 생성)

  • 이인원;강효중
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.129-135
    • /
    • 1994
  • Ninety-two isolates of Fusarium species were obtained from Chinese corn samples. The predominant Fusarium species isolated from corn seeds were F. moniliforme, F. proliferatum, F. oxysporum and F. subglutinans, and all 13 species were identified. Each isolate was grown on autoclaved wheat grains and wheat cultures were fed by twenty-one-day-old female rats for the toxicity test. Twenty-six out of 92 isolates caused the death accompanying feed refusal, severe weight loss, liver damage, and hemorrhages in the stomach and intestines. Of the toxigenic isolates, 17 isolates of F. moniliforme, 4 of F. oxysporum, 3 of F. proliferatum, and one of each F. sporotrichioides and unknown species were lethal to rats. The analyses of fumonisin B1 production of the 26 toxigenic Fusarium isolates were carried out by thin layer chromatography and high-performance liquid chromatography, and fumonisin B1 was confirmed by mass spectrometry. Fumonisin B1 was produced in wheat culture at levels ranging from 280 $\mu\textrm{g}$/g to 3,952 $\mu\textrm{g}$/g by all of toxigenic F. moniliforme and F. proliferatum, but by none of the other toxigenic Fusarium species. The present results suggest the high possibility of natural occurrence of fumonisin B1 in corn samples imported from China.

  • PDF

Development of PCR-RFLP Technique for Identify Several Members of Fusarium incarnatum-equiseti Species Complex and Fusarium fujikuroi Species Complex

  • Pramunadipta, Syafiqa;Widiastuti, Ani;Wibowo, Arif;Suga, Haruhisa;Priyatmojo, Achmadi
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.254-260
    • /
    • 2022
  • Fusarium incarnatum-equiseti species complex (FIESC) contain over 40 members. The primer pair Smibo1FM/Semi1RM on the RPB2 partial gene has been reported to be able to identify Fusarium semitectum. The F. fujikuroi species complex (FFSC) contains more than 50 members. The F. verticillioides as a member of this complex can be identified by using VER1/VER2 primer pair on the CaM partial gene. In this research, the Smibo1FM/Semi1RM can amplify F. sulawesiense, F. hainanense, F. bubalinum, and F. tanahbumbuense, members of FIESC at 424 bp. The VER1/VER2 can amplify F. verticillioides, F. andiyazi, and F. pseudocircinatum, members of FFSC at 578 bp. Polymerase chain reaction-restriction fragment length polymorphism by using the combination of three restriction enzymes EcoRV, MspI, and HpyAV can differentiate each species of FIESC used. The two restriction enzymes HpaII and NspI can distinguish each species of FFSC used. The proper identification process is required for pathogen control in the field in order to reduce crop yield loss.

Interactions of Virulent and Avirulent Fusarium species on Clonal Asparagus Plantlets and Mechanisms Involved in Protection of Asparagus with Avirulent Fusarium Species Against Stem and Crown Rots (아스파라거스에서 병원성 및 비병원성 Fusarium균의 상호작용과 비병원성 Fusarium을 이용한 아스파라거스 줄기 및 뿌리썩음병 방제 기작 연구)

  • 이윤수
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.47-57
    • /
    • 1996
  • 병원성 Fusarium에 의한 아스파라거스 감염은 비병원성 Fusarium을 5일과 7일 전에 접종하였을 때 방제효과가 있었다. 비병원성 F. oxysporum은 F. moniliforme에 대하여 방제효과가 있었고, F. solani는 F. oxysproum에 대하여 방제효과가 있음이 밝혀졌다. 실험에 사용된 Fusarium 균들은 모두 주근과 측근의 말단 부위, 상처부위, 그리고 표피의 세포벽 사이를 통하여 감염하였다. 경우에 따라 감염하는 동안 appressorium과 유사한 구조를 형성하기도 하였고, 직접 감염하는 경우도 있었다. 병원성 그리고 비병원성 Fusarium 균 모두 공통적으로 생장점 부위를 통하여 감염하였다. 병원성이 강한 Fusarium 균의 경우 비병원성 균들보다 감염의 속도가 빨랐고 더욱 생장이 왕성하였다. F. solani는 생장속도나 기주 조직 침입속도가 매우 느렸다. 기주 감염의 결과 처음에는 cortical rot을 유발시켰고 나중에는 tracheary elements를 감염하고 결국은 조직의 괴사를 유발하는 것이 관찰되었다. 비병원성 F. oxysporum은 표피조직에 두터운 균사층을 형성하였고, 이는 병원성 Fusarium 균에 대한 방제효과를 나타내는 원인을 제공한 것으로 여겨진다. F. solani는 측근의 생성을 촉진시켜 표면적을 증대시킨 것으로 여겨진다. 결론적으로 AVFO와 F. solani를 이용하여 아스파라거스에 발생하는 병원성 Fusarium균의 침입을 저지할 수 있는 생물적 방제가 가능함이 밝혀졌다.

  • PDF

Weather Effect and Response of Promoted Rice Varieties on Fusarium Infection in Paddy Field (벼 붉은곰팡이병 감염에 대한 기상조건의 영향과 장려품종의 반응)

  • Lee, Theresa;Jang, Ja Yeong;Kim, Jeomsoon;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Fusarium infection rate of the paddy rice grain after harvest seemed to be influenced by the average temperature from late July (before heading) to the end of September (during ripening). In case of 2010 and 2013 in which average temperature of the same period was similar, Fusarium infection was related to cumulative precipitation, cumulative precipitation days, and precipitation durations over two days. The distribution ratio of Fusarium species complex isolated from paddy rice grains after harvest was 57% in 2010 and 45% in 2013 for Fusarium graminearum species complex (FGSC), 35% and 50% for Fusarium incarnatum-equiseti species complex, and 8% and 5% for Fusarium fujikuroi species complex (FFSC). The distribution ratios of FGSC and FFSC were higher in 2010 than 2013. Among the total 26 promoted rice varieties, the 'Mihyang' showed resistant response against the natural infection with Fusarium species belonging to FGSC and the varieties of 'Nampyeong', 'Hi-ami'and 'Younghojinmi' showed resistant response against the natural infection with overall Fusarium pathogens. Majority of the promoted rice varieties could not be classified for resistance or susceptibility. These results are valuable as basic data to determine the resistance and susceptibility of rice variety against Fusarium spp. infection in the field.

Isolation and Phylogenetic Analysis of Orchid Rotting Fungus, Fusarium sp. KS-01 (난 썩음병균 Fusarium sp. KS-01의 분리 및 계통학적 분석)

  • Park, In-Jae;Shin, Kwang-Soo
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.92-94
    • /
    • 2005
  • A orchid rotting fungus was isolated and identified. The isolate was consistent with the genus Fusarium in morphological and cultural characteristics. The partial 18S rRNA sequence of the isolate showed high similarity with anamorph or telemorph of Fusarium and other Fusarium species. In phylogenetic analysis, the isolates was poorly related to other Fusarium species. The isolate closely related to Fusarium sp. LP-A2/3.