DOI QR코드

DOI QR Code

Distribution and Pathogenicity of Fusarium Species Associated with Soybean Root Rot in Northeast China

  • Yingying Liu (Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University) ;
  • Xuena Wei (Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University) ;
  • Feng Chang (Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University) ;
  • Na Yu (Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University) ;
  • Changhong Guo (Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University) ;
  • Hongsheng Cai (Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University)
  • Received : 2023.06.21
  • Accepted : 2023.10.17
  • Published : 2023.12.01

Abstract

Fusarium root rot is an increasingly severe problem in soybean cultivation. Although several Fusarium species have been reported to infect soybean roots in Heilongjiang province, their frequency and aggressiveness have not been systematically quantified in the region. This study aimed to investigate the diversity and distribution of Fusarium species that cause soybean root rot in Heilongjiang province over two years. A total of 485 isolates belonging to nine Fusarium species were identified, with F. oxysporum and F. solani being the most prevalent. Pot experiments were conducted to examine the relative aggressiveness of different Fusarium species on soybean roots, revealing that F. oxysporum and F. solani were the most aggressive pathogens, causing the most severe root rot symptoms. The study also assessed the susceptibility of different soybean cultivars to Fusarium root rot caused by F. oxysporum and F. solani. The results indicated that the soybean cultivar DN51 exhibited the most resistance to both pathogens, indicating that it may possess genetic traits that make it less susceptible to Fusarium root rot. These findings provide valuable insights into the diversity and distribution of Fusarium species that cause soybean root rot and could facilitate the development of effective management strategies for this disease.

Keywords

Acknowledgement

This study was supported by The National Key R&D Program of China (2022YFE0203300) and Heilongjiang Postdoctoral Fund (LBH-Z20160).

References

  1. Abbas, A., Mubeen, M., Sohail, M. A., Solanki, M. K., Hussain, B., Nosheen, S., Kashyap, B. K., Zhou, L. and Fang, X. 2022. Root rot a silent alfalfa killer in China: distribution, fungal, and oomycete pathogens, impact of climatic factors and its management. Front. Microbiol. 13:961794.
  2. Arias, M. M. D., Leandro, L. F. and Munkvold, G. P. 2013. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans. Phytopathology 103:822-832. https://doi.org/10.1094/PHYTO-08-12-0207-R
  3. Ayesha, M. S., Suryanarayanan, T. S., Nataraja, K. N., Prasad, S. R. and Shaanker, R. U. 2021. Seed treatment with systemic fungicides: time for review. Front. Plant Sci. 12:654512.
  4. Brizuela, A. M., Lalak-Kanczugowska, J., Koczyk, G., Stepien, L., Kawalilo, M. and Palmero, D. 2021. Geographical origin does not modulate pathogenicity or response to climatic variables of Fusarium oxysporum associated with vascular wilt on asparagus. J. Fungi (Basel) 7:1056.
  5. Cai, H., Tao, N. and Guo, C. 2020. Systematic investigation of the effects of macro-elements and iron on soybean plant response to Fusarium oxysporum infection. Plant Pathol. J. 36:398-405. https://doi.org/10.5423/PPJ.OA.04.2020.0069
  6. Cai, H., Yu, N., Liu, Y., Wei, X. and Guo, C. 2022a. Meta-analysis of fungal plant pathogen Fusarium oxysporum infection-related gene profiles using transcriptome datasets. Front. Microbiol. 13:970477.
  7. Cai, Z., Li, S., Du, G. and Xue, R. 2022b. Linking smallholder farmers to the Heilongjiang Province Crop Rotation Project: assessing the impact on production and well-being. Sustainability 14:38.
  8. Cao, M. M., Li, Q., Zhang, L. Y., Gao, J., Li, W. H., Ding, W. M. and Sun, Y. K. 2014. Accumulated temperature variation and accumulated temperature rezone in Heilongjiang province. Chinese J. Agrometeorol. 35:492-496.
  9. Chang, K. F., Hwang, S. F., Conner, R. L., Ahmed, H. U., Zhou, Q., Turnbull, G. D., Strelkov, S. E., McLaren, D. L. and Gossen, B. D. 2015. First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Prot. 67:52-58. https://doi.org/10.1016/j.cropro.2014.09.020
  10. Cheng, Y. T., Zhang, L. and He, S. Y. 2019. Plant-microbe interactions facing environmental challenge. Cell Host Microbe 26:183-192. https://doi.org/10.1016/j.chom.2019.07.009
  11. Cruz, D. R., Leandro, L. F. S. and Munkvold, G. P. 2019. Effects of temperature and pH on Fusarium oxysporum and soybean seedling disease. Plant Dis. 103:3234-3243. https://doi.org/10.1094/PDIS-11-18-1952-RE
  12. Du, Z., Gao, B., Ou, C., Du, Z., Yang, J., Batsaikhan, B., Dorjgotov, B., Yun, W. and Zhu, D. 2021. A quantitative analysis of factors influencing organic matter concentration in the topsoil of black soil in northeast China based on spatial heterogeneous patterns. ISPRS Int. J. Geo-Inf. 10:348.
  13. Hafez, M., Abdelmagid, A., Aboukhaddour, R., Adam, L. R. and Daayf, F. 2021. Fusarium root rot complex in soybean: molecular characterization, trichothecene formation, and cross-pathogenicity. Phytopathology 111:2287-2302. https://doi.org/10.1094/PHYTO-03-21-0083-R
  14. Husaini, A. M., Sakina, A. and Cambay, S. R. 2018. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand? Mol. Plant-Microbe Interact. 31:889-898. https://doi.org/10.1094/MPMI-12-17-0302-CR
  15. Hymowitz, T. and Shurtleff, W. R. 2005. Debunking soybean myths and legends in the historical and popular literature. Crop Sci. 45:473-476. https://doi.org/10.2135/cropsci2005.0473
  16. Kaur, S., Barakat, R., Kaur, J. and Epstein, L. 2022. The effect of temperature on disease severity and growth of Fusarium oxysporum f. sp. apii races 2 and 4 in celery. Phytopathology 112:364-372. https://doi.org/10.1094/PHYTO-11-20-0519-R
  17. Li, D., He, L., Qu, J. and Xu, X. 2022. Spatial evolution of cultivated land in the Heilongjiang Province in China from 1980 to 2015. Environ. Monit. Assess. 194:444.
  18. Lin, F., Chhapekar, S. S., Vieira, C. C., Da Silva, M. P., Rojas, A., Lee, D., Liu, N., Pardo, E. M., Lee, Y.-C., Dong, Z., Pinheiro, J. B., Ploper, L. D., Rupe, J., Chen, P., Wang, D. and Nguyen, H. T. 2022. Breeding for disease resistance in soybean: a global perspective. Theor. Appl. Genet. 135:3773-3872. https://doi.org/10.1007/s00122-022-04101-3
  19. Liu, H., Brettell, L. E., Qiu, Z. and Singh, B. K. 2020. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25:733-743. https://doi.org/10.1016/j.tplants.2020.03.014
  20. Lu, Z.-j., Song, Q., Liu, K.-b., Wu, W.-b., Liu, Y.-x., Xin, R. and Zhang, D.-m. 2017. Rice cultivation changes and its relationships with geographical factors in Heilongjiang Province, China. J. Integr. Agric. 16:2274-2282. https://doi.org/10.1016/S2095-3119(17)61705-2
  21. Mei, L., Zhang, N., Wei, Q., Cao, Y., Li, D. and Cui, G. 2022. Alfalfa modified the effects of degraded black soil cultivated land on the soil microbial community. Front. Plant Sci. 13:938187.
  22. Nasr Esfahani, M. 2018. Genetic and virulence variation in Fusarium oxysporum f. sp. cepae causing root and basal rot of common onion in Iran. J. Phytopathol. 166:572-580. https://doi.org/10.1111/jph.12720
  23. Nikitin, D. A., Ivanova, E. A., Semenov, M. V., Zhelezova, A. D., Ksenofontova, N. A., Tkhakakhova, A. K. and Kholodov, V. A. 2023. Diversity, ecological characteristics and identification of some problematic phytopathogenic Fusarium in soil: a review. Diversity 15:49.
  24. O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 95:2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  25. Poole, G. J., Smiley, R. W., Walker, C., Huggins, D., Rupp, R., Abatzoglou, J., Garland-Campbell, K. and Paulitz, T. C. 2013. Effect of climate on the distribution of Fusarium spp. causing crown rot of wheat in the Pacific Northwest of the United States. Phytopathology 103:1130-1140. https://doi.org/10.1094/PHYTO-07-12-0181-R
  26. Saleh, A. A., Sharafaddin, A. H., El Komy, M. H., Ibrahim, Y. E. and Hamad, Y. K. 2021. Molecular and physiological characterization of Fusarium strains associated with different diseases in date palm. PLoS ONE 16:e0254170.
  27. Scott, J. C., Gordon, T. R., Shaw, D. V. and Koike, S. T. 2010. Effect of temperature on severity of Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae. Plant Dis. 94:13-17. https://doi.org/10.1094/PDIS-94-1-0013
  28. Sillo, F. 2022. Genetic analysis of plant pathogens natural populations. Methods Mol. Biol. 2536:405-422. https://doi.org/10.1007/978-1-0716-2517-0_23
  29. Velasquez, A. C., Castroverde, C. D. M. and He, S. Y. 2018. Plant-pathogen warfare under changing climate conditions. Curr. Biol. 28:R619-R634. https://doi.org/10.1016/j.cub.2018.03.054
  30. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, San Diego, CA, USA.
  31. Yan, H. and Nelson, B. Jr. 2022. Effects of soil type, temperature, and moisture on development of Fusarium root rot of soybean by Fusarium solani (FSSC 11) and Fusarium tricinctum. Plant Dis. 106:2974-2983. https://doi.org/10.1094/PDIS-12-21-2738-RE
  32. Zhao, J., Ni, T., Li, Y., Xiong, W., Ran, W., Shen, B., Shen, Q. and Zhang, R. 2014. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 9:e85301.
  33. Zhou, J., Jiang, X., Wei, D., Zhao, B., Ma, M., Chen, S., Cao, F., Shen, D., Guan, D. and Li, J. 2017. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci. Rep. 7:3267.