DOI QR코드

DOI QR Code

Unraveling the Role of Cytochrome P450 as a Key Regulator Lantipeptide Production in Streptomyces globisporus

  • Da-Ran Kim (Research Institute of Life Science, Gyeongsang National University) ;
  • Su In Lee (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Youn-Sig Kwak (Research Institute of Life Science, Gyeongsang National University)
  • Received : 2023.08.27
  • Accepted : 2023.09.20
  • Published : 2023.12.01

Abstract

The aim of this study was to investigate the regulation of lantipeptide production in Streptomyces globisporus SP6C4, which produces the novel antifungal lantipeptides conprimycin and grisin, and to identify the role of cytochrome P450 (P450) in tis regulation. To investigate the regulation of lantipeptide production, we created gene deletion mutants, including ΔP450, ΔtsrD, ΔlanM, ΔP450ΔtsrD, and ΔP450ΔlanM. These mutants were characterized in terms of their morphology, sporulation, attachment, and antifungal activity against Fusarium oxysporum. The gene deletion mutants showed distinct characteristics compared to the wild-type strain. Among them, the ΔP450ΔlanM double mutant exhibited a recovery of antifungal activity against F. oxysporum, indicating that P450 plays a significant role in regulating lantipeptide production in S. globisporus SP6C4. Our findings highlight the significant role of P450 in the regulation of lantipeptide production and morphological processes in S. globisporus. The results suggest a potential link between P450-mediated metabolic pathways and the regulation of growth and secondary metabolism in SP6C4, thereby highlighting P450 as a putative target for the development of new antifungal agents.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) [2020R1A2C2004177].

References

  1. Bobek, J., Strakova, E., Zikova, A. and Vohradsky, J. 2014. Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor. BMC Genomics 15:1173.
  2. Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crusemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95
  3. Chaiharn, M., Theantana, T. and Pathom-Aree, W. 2020. Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi. Pathogens 9:126.
  4. Challis, G. L. and Hopwood, D. A. 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. U. S. A. 100:14555-14561. https://doi.org/10.1073/pnas.1934677100
  5. Cho, M.-A., Han, S., Lim, Y.-R., Kim, V., Kim, H. and Kim, D. 2019. Streptomyces cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents. Biomol. Ther. 27:127-133. https://doi.org/10.4062/biomolther.2018.183
  6. Genilloud, O. 2017. Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34:1203-1232. https://doi.org/10.1039/C7NP00026J
  7. Gober, J. G., Ghodge, S. V., Bogart, J. W., Wever, W. J., Watkins, R. R., Brustad, E. M. and Bowers, A. A. 2017. 450-mediated non-natural cyclopropanation of dehydroalanine-containing thiopeptides. ACS Chem. Biol. 12:1726-1731. https://doi.org/10.1021/acschembio.7b00358
  8. Guengerich, F. P. 2001. Analysis and characterization of enzymes and nucleic acids. In: Principles and methods of toxicology, ed. by A. W. Hayes, pp. 1625-1687. Taylor & Francis, Philadelphia, PA, USA.
  9. Han, S., Pham, T.-V., Kim, J.-H., Lim, Y.-R., Park, H.-G., Cha, G.-S., Yun, C.-H., Chun, Y.-J., Kang, L.-W. and Kim, D. 2015. Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575:1-7. https://doi.org/10.1016/j.abb.2015.03.025
  10. Jung, S. J., Kim, N. K., Lee, D.-H., Hong, S. I. and Lee, J. K. 2018. Screening and evaluation of Streptomyces species as a potential biocontrol agent against a wood decay fungus, Gloeophyllum trabeum. Mycobiology 46:138-146. https://doi.org/10.1080/12298093.2018.1468056
  11. Kaiser, B. K. and Stoddard, B. L. 2011. DNA recognition and transcriptional regulation by the whiA sporulation factor. Sci. Rep. 1:156.
  12. Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802.
  13. Kim, D.-R., Jeon, C.-W., Cho, G., Thomashow, L. S., Weller, D. M., Paik, M.-J., Lee, Y.-B. and Kwak, Y.-S. 2021. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome 9:244.
  14. Kim, D.-R., Jeon, C.-W., Shin, J.-H., Weller, D. M., Thomashow, L. and Kwak, Y.-S. 2019b. Function and distribution of a lantipeptide in strawberry fusarium wilt disease-suppressive soils. Mol. Plant-Microbe Interact. 32:306-312. https://doi.org/10.1094/MPMI-05-18-0129-R
  15. Kim, D.-R. and Kwak, Y.-S. 2021. A genome-wide analysis of antibiotic producing genes in Streptomyces globisporus SP6C4. Plant Pathol. J. 37:389-395. https://doi.org/10.5423/PPJ.NT.03.2021.0047
  16. Konietschke, F., Brunner, E. and Hothorn, L. A. 2008. Nonparametric relative contrast effects: asymptotic theory and small sample approximations. URL https://rdrr.io/cran/nparcomp/man/nparcomp.html [27 August 2023].
  17. Lee, C. W., Lee, J.-H., Rimal, H., Park, H., Lee, J. H. and Oh, T.-J. 2016. Crystal structure of cytochrome P450 (CYP105P2) from Streptomyces peucetius and its conformational changes in response to substrate binding. Int. J. Mol. Sci. 17:813.
  18. Lim, Y.-R., Hong, M.-K., Kim, J.-K., Doan, T. T. N., Kim, D.-H. Yun, C.-H., Chun, Y.-J., Kang, L.-W. and Kim, D. 2012. Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch. Biochem. Biophys. 528:111-117. https://doi.org/10.1016/j.abb.2012.09.001
  19. Mahdi, R. A., Bahrami, Y. and Kakaei, E. 2022. Identification and antibacterial evaluation of endophytic actinobacteria from Luffa cylindrica. Sci. Rep. 12:18236.
  20. Malinga, N. A., Nzuza, N., Padayachee, T., Syed, P. R., Karpoormath, R., Gront, D., Nelson, D. R. and Syed, K. 2022. An unprecedented number of cytochrome P450s are involved in secondary metabolism in Salinispora species. Microorganisms 10:871.
  21. McCormick, J. R. and Flardh, K. 2012. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 36:206-231. https://doi.org/10.1111/j.1574-6976.2011.00317.x
  22. Mnguni, F. C., Padayachee, T., Chen, W., Gront, D., Yu, J.-H., Nelson, D. R. and Syed, K. 2020. More P450s are involved in secondary metabolite biosynthesis in Streptomyces compared to Bacillus, Cyanobacteria, and Mycobacterium. Int. J. Mol. Sci. 21:4814.
  23. Moshoeshoe, S. 2019. Comparative analysis of cytochrome P450 monooxygenases between the genera Streptomyces and Mycobacterium. Ph.D. thesis. Central University of Technology, Bloemfontein, South Africa.
  24. Munzel, U. and Hothorn, L. A. 2001. A unified approach to simultaneous rank tests procedures in the unbalanced one-way layout. Biom. J. 43:553-569. https://doi.org/10.1002/1521-4036(200109)43:5<553::AID-BIMJ553>3.0.CO;2-N
  25. Ngcobo, P. E., Nkosi, B. V. Z., Chen, W., Nelson, D. R. and Syed, K. 2023. Evolution of cytochrome P450 enzymes and their redox partners in Archaea. Int. J. Mol. Sci. 24:4161.
  26. Nguyen, H. T. T., Park, A. R., Hwang, I. M. and Kim, J.-C. 2021. Identification and delineation of action mechanism of antifungal agents: reveromycin E and its new derivative isolated from Streptomyces sp. JCK-6141. Postharvest Biol. Technol. 182:111700.
  27. Rebets, Y., Tsolis, K. C., Gudmundsdottir, E. E., Koepff, J., Wawiernia, B., Busche, T., Bleidt, A., Horbal, L., Myronovskyi, M., Ahmed, Y., Wiechert, W., Ruckert, C., Hamed, M. B., Bilyk, B., Anne, J., Fridjonsson, O., Kalinowski, J., Oldiges, M., Economou, A. and Luzhetskyy, A. 2018. Characterization of sigma factor genes in Streptomyces lividans TK24 using a genomic library-based approach for multiple gene deletions. Front. Microbiol. 9:3033.
  28. Repka, L. M., Chekan, J. R., Nair, S. K. and van der Donk, W. A. 2017. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem. Rev. 117:5457-5520. https://doi.org/10.1021/acs.chemrev.6b00591
  29. Romero-Rodriguez, A., Robledo-Casados, I. and Sanchez, S. 2015. An overview on transcriptional regulators in Streptomyces. Biochim. Biophys. Acta 1849:1017-1039. https://doi.org/10.1016/j.bbagrm.2015.06.007
  30. Shi, L., Wu, Z., Zhang, Y., Zhang, Z., Fang, W., Wang, Y., Wan, Z., Wang, K. and Ke, S. 2019. Herbicidal secondary metabolites from Actinomycetes: structure diversity, modes of action, and their roles in the development of herbicides. J. Agric. Food Chem. 68:17-32. https://doi.org/10.1021/acs.jafc.9b06126
  31. Zhang, Q., Doroghazi, J. R., Zhao, X., Walker, M. C. and van der Donk, W. A. 2015. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in Actinobacteria. Appl. Environ. Microbiol. 81:4339-4350. https://doi.org/10.1128/AEM.00635-15