• Title/Summary/Keyword: Furnace Annealing

Search Result 249, Processing Time 0.03 seconds

Annealing Effect in the Cold-Plastic Deformation of Amorphous PET Material (무정형 PET 재료의 플라스틱 냉간 변형에서의 열처리 효과)

  • Lee, Jong-Young;Park, Seong-Soo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • When polyethylene terephthalate(PET) film specimen were stepwise elongated under tension with various speeds of about 0.5~500 mm/min, the necking area, consisted of transparent and opaque bands, was formed during plastic deformation. Stress oscillation was apparently obtained in the stress-strain curve of above specimen. However, stress oscillation was not obtained in the stress-strain curve of annealing specimen. Microstructure was examined dynamically using an optical microscopy and thermal analysis was carried out in a differential scanning calorimeter at a heating rate of 10${\circ}$/min. Also, orientation and crystallization were examined using monochromatic-pinhole technique and elastic modulus was measured by a dynamic mechanical analyzer in the temperature range of -150~70 ${\circ}$ with the frequency of 1 Hz. Transparent PET products were fabricated by use of the PET pellets annealed at 83${\circ}$ for 30 min in an electric furnace.

  • PDF

Phase Formation of $BaTiO_3$ Thin Films by Sputtering (Sputtering법에 의한 $BaTiO_3$ 박막의 상형성에 관한 연구)

  • 안재민;최덕균;김영호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.657-663
    • /
    • 1993
  • BaTiO3 sputtering targets of 3 inch diameter were prepared by sintering the CIP (Cold Isotatic Pressing) compacts at 136$0^{\circ}C$ for 3hrs. The apparent density and grain size were 97% and 30${\mu}{\textrm}{m}$, respectively. After BaTiO3 films were deposited on Si and Pt/Ti/SiO2/Si substrates using these targets, films were annealed at various conditions and the crystallization behavior, reaction with the substrate and the electrical properties were investigated. The films on both substrates required 5~20hrs furnace annealing for crystallization at the temperatures from $600^{\circ}C$ to 80$0^{\circ}C$. For the films on Si substrate, interaction between the film and the substrate was suppressed upt o $700^{\circ}C$ for 10 hrs and the relative dielectric constant was 30. As the annelaing temperature and time were increased, the relative dielectric constants of the films decreased due to the formation of silicate phases through the reaction with the substrate. For the BaTiO3 films on Pt/Ti/SiO2/Si substrate, the reaction with the substrate was further reduced when the annealing condition was identical to that for Si substrate, but the reaction between the layers in Pt electrode took place above $700^{\circ}C$. When the films were annealed at $600^{\circ}C$ where the stability of Pt electrode was sustained, relative dielectric constant was increased to 110 since the reaction with substrate was effectively reduced even for a longer annealing time and the crystallization was enhanced.

  • PDF

A Study on Properties of CuInS2 Thin Films by Cu/ln Ratio (Cu/In 비에 따른 CuInS2 박막의 특성에 관한 연구)

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.594-599
    • /
    • 2007
  • [ $CulnS_2$ ] thin films were synthesized by sulfurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature $200^{\circ}C$. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the annealed $200^{\circ}C$ of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and Hall measurement system. The compositional deviations from the ideal chemical formula for $200^{\circ}C$ material can be conveniently described by non-molecularity$({\Delta}x=[Cu/In]-1)$ and non-stoichiometry $({\Delta}y=[{2S/(Cu+3In)}-1])$. The variation of ${\Delta}x$ would lead to the formation of equal number of donor and accepters and the films would behave like a compensated material. The ${\Delta}y$ parameter is related to the electronic defects and would determine the type of the majority charge carriers. Films with ${\Delta}y>0$ would behave as p-type material while ${\Delta}y<0$ would show n-type conductivity. At the sane time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}cm^{-3},\;312.502cm^2/V{\cdot}s\;and\;2.36{\times}10^{-2}\;{\Omega}{\cdot}cm$, respectively.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Interface Traps Analysis as Bonding of The Silicon/Nitrogen/Hydrogen in MONOS Capacitors (실리콘/수소/질소의 결합에 따른 MONOS 커패시터의 계면 특성 연구)

  • Kim, Hee-Dong;An, Ho-Myoung;Seo, Yu-Jeong;Zhang, Yong-Jie;Nam, Ki-Hyun;Chung, Hong-Bay;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.18-23
    • /
    • 2009
  • The effect of hydrogen-nitrogen annealing on the interface trap properties of Metal-Oxide-Nitride-Oxide-Silicon (MONOS) capacitors is investigated by analyzing the capacitors' gate leakage current and the interface trap density between the Si and $SiO_2$ layer. MONOS samples annealed at $850^{\circ}C$ for 30 s by rapid thermal annealing (RTA) are treated by additional annealing in a furnace, using annealing eases $N_2$ and 2% hydrogen and 98% nitrogen gas mixture $(N_2-H_2)$ at $450^{\circ}C$ for 30 mins. Among the three samples as-deposited, annealed in $N_2$ and $N_2-H_2$, MONOS sample annealed in an $N_2-H_2$ environment is found to have the lowest increase of interface-trap density from the capacitance-voltage experiments. The leakage current of sample annealed in $N_2-H_2$ is also lower than that of sample annealed in $N_2$.

Thermal Shock Resistance and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics

  • Kim, Ik-Jin
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.179-193
    • /
    • 2000
  • Aluminium titanate (Al₂TiO5) with an excellent thermal shock resistant and a low the expansion coefficient was obtained by solid solution with MgO, SiO₂, and ZrO₂ in the Al₂TiO5 lattice or in the grain boundary solution through electrofusion in an arc furnace. However, these materials have low mechanical strength due to the presence of microcracks developed by a large difference in thermal expansion coefficients along crystallographic axes. Pure Al₂TiO5 tends to decompose into α-Al₂O₃ and TiO₂-rutile in the temperature range of 750-1300℃ that rendered it apparently useless for industrial applications. Several thermal shock tests were performed: Long therm thermal annealing test at 1100℃ for 100h; and water quenching from 950 to room temperature (RT). Cyclic thermal expansion coefficients up to 1500℃ before and after decomposition tests was also measured using a dilatometer, changes in the microstructure, thermal expansion coefficients, Young's modulus and strengths were determined. The role of microcracks in relation to thermal shock resistance and thermal expansion coefficient is discussed.

  • PDF

Crystal growth of BT-based ferroelectric films for nonvolatile memories

  • Yang, B.;Park, N.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.151-154
    • /
    • 2004
  • Issues of ferroelectric high-density memories (>64 Mb) indispensable for upcoming ubiquitous era have been on the cell integration less than $0.1\;\mu\textrm{m}^2$ and reliabilities. Thus nanoscale control of microstructures of ferroelectric films with large switching polarization has been one of the issues to obtain the uniform electrical properties for realization of high-density memories. In this study the grain orientations and distributions of BT-based films by spin-on coatings were examined by FEG-SEM/EBSD. Ferroelectric domain characteristics by PFM were also performed to study the dependence of reliabilities on the grain orientations and distributions. It is believed that understandings of the nucleation and growth mechanisms of the a- or b-axis oriented films during the thermal processes such as RTA and furnace annealing affecting on grain orientation and uniformity could be possible based on our experimental results.

Suppression of Gate Oxide Degradation for MOS Devices Using Deuterium Ion Implantation Method

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.188-191
    • /
    • 2012
  • This paper introduces a new method regarding deuterium incorporation in the gate dielectric including deuterium implantation and post-annealing at the back-end-of-the process line. The control device and the deuterium furnace-annealed device were also prepared for comparison with the implanted device. It was observed that deuterium implantation at a light dose of $1{\times}10^{12}-1{\times}10^{14}/cm^2$ at 30 keV reduced hot-carrier injection (HCI) degradation and negative bias temperature instability (NBTI) within our device structure due to the reduction in oxide charge and interface trap. Deuterium implantation provides a possible solution to enhance the bulk and interface reliabilities of the gate oxide under the electrical stress.

카메라 모듈용 IR Cut filter 코팅 및 열처리 공정 연구

  • Sin, Gwang-Su;Park, Chang-Mo;Kim, Hyo-Jin;Kim, Seon-Hun;Gi, Hyeon-Cheol;Han, Myeong-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.49-49
    • /
    • 2009
  • 카메라 모듈용 적외선 차단 필터를 설계하고 이온빔 증착 장비를 이용한 코팅 공정 후 특성을 조사하였다. 코팅 실험에 앞서 Macleod 프로그램을 이용하여 640nm 차단 필터를 설계하였으며, 실험은 Ion-Assisted Deposition 장비를 사용하여 $TiO_2/SiO_2$ 유전층을 다층 박막으로 증착하였다. 투과도 분석에서 640nm 차단 필터는 설계 곡선과 약 8nm 이내에서 일치하였으며, 갓 성장된 박막 투과도는 400~600nm에서 약 80% 이었으며, 급속열처리 및 열처리 후 약 5% 증가된 투과도를 보였다. 표면거칠기 또한 감소하였다. 따라서 열처리로 인한 재결정화 및 결함감소에 의해 필터특성이 향상되었음을 알 수 있었다.

  • PDF

Effect of Acrylonitrile Content on the Glass Transition Temperature and Melt Index of PVC/SAN Blends

  • Liu Wang;Kim Hwan-Chul;Pak Pyong-Ki;Kim Jong-Chun
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • PVC and SAN are often mixed to compensate for the disadvantages of each polymer. Miscibility and thermal stability of PVC/SAN blend were investigated in this study by blending SAN polymer having 20, 24, 28, 32 % of acrylonitrile contents. Two polymers were mixed using a melt blending method with a single screw extruder. DSC thermogram was used to evaluate miscibility of the two polymers. SAN having 24 % of acrylonitrile showed the best miscibility with PVC. In order to evaluate degradation behavior, blended polymer was heat treated in DSC furnace and glass transition temperature was measured consecutively. Glass transition temperature increased continuously with annealing time due to degradation and cross-linking of polymer chains. Melt index of blended polymer was always higher than that of PVC.